A kinetic model is developed for de novo synthesis of PCDD/F from carbon in incinerator fly ash. The main mechanistic steps considered in the model are carbon gasification, PCDD/F formation, desorption and degradation. Rate equations are derived which can relate PCDD/F formation with process variables including carbon concentration of fly ash, partial pressure of oxygen, reaction temperature and time. The kinetic model has been verified using laboratory de novo synthesis data reported in the literature. When the model is applied to industrial incinerator conditions, PCDD/F formation levels of 0.1-0.5 microg/N m3 in the gas phase and 0.1-1.2 microg/g in the solid phase are calculated, and both are in good agreement with incinerator measurements. 相似文献
The object of this research was to study the formation of disinfection by-products by using chlorine dioxide (ClO2) as a disinfectant reacting with different properties of organic substance in natural aquatic environment. The adsorbent resin (XAD-4, XAD-7) was used to divide the organic matters in raw water into three groups. The influence of the function groups on structure, reaction tendency, and formation of disinfection by-products generated by the reaction of these organic substances with chlorine dioxide was explored. The experimental results show that the three different organic groups formed using adsorbent resin were hydrophobic substance, hydrophilic acid, and non-acid hydrophilics in proportions of 43%, 41%, and 16%, respectively. Within the raw water in our study, the hydrophilic substance had a higher distribution proportion than that described in general articles and journals, which indicates that this water was contaminated with pollution from human beings. The exploration of the reactivity of the three different organic substances with chlorine dioxide shows that the unit consumption of disinfection agent per unit organic matters (represented by ClO2/DOC) is in the following sequence hydrophobic substance > hydrophilic substance > non-acid hydrophilics. It indicated that larger molecular organic precursors had larger consumption of disinfectant. We also discovered that after the reaction of the three different organic substances with chlorine dioxide, the largest amount of disinfection by-products were generated by the non-acid hydrophilics. 相似文献
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged. 相似文献
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish. 相似文献
Environmental Science and Pollution Research - The bamboo flowering leads to the habitat fragmentation and food quality decline of a giant panda. Few empirical research has been conducted about the... 相似文献
The present study assessed the DNA damage in environmentally exposed volunteers living in seven municipalities in an industrial coal region, through the use of the comet assay with blood cells and the micronucleus test with buccal cells. Blood and buccal smears were collected from 320 male volunteers living in seven cities inserted in a coal region. They were ages of 18 and 50 years and also completed a questionnaire intended to identify factors associated with DNA damage through a Poisson regression analysis. The comet assay detected significant differences in DNA damage in volunteers from different municipalities, and neighboring cities (Pedras Altas, Aceguá, and Hulha Negra) had a higher level of DNA damage in relation to control city. Some of the risk factors associated with identified DNA lesions included residence time and life habits. On the other hand, the micronucleus test did not identify differences between the cities studied, but the regression analysis identified risk factors such as age and life habits (consumption of mate tea and low carbohydrates diet). We conclude that there are differences in the DNA damage of volunteers from different cities of the carboniferous region, but the presence of micronuclei in the oral mucosa does not differ between the same cities. Furthermore, we alert that some related factors may increase the risk of genotoxicity, such as residence location and time, and living and food habits. Finally, we suggest the need for continuous biomonitoring of the population, as well as for investing in health promotion in these vulnerable populations.
Yearly, huge amounts of sock refuse are discarded into the environment. Socks contain many molecules, and worn ones, which are rich in smell-causing bacteria, have a strong influence on animals’ behaviors. But the impacts of sock odor on the oviposition behavior of dengue vectors are unknown. We assessed whether Aedes albopictus changes its oviposition activity in response to the presence of used socks extract (USEx) in potential breeding grounds, using choice and no-choice bioassays (NCB). When furnished even chances to oviposit in two sites holding USEx and two others containing water (control), Ae. albopictus deposited significantly less eggs in USEx than in water sites. A similar pattern of oviposition preference was also observed when there were more oviposition options in water. When there were greater oviposition opportunities in USEx sites, Ae. albopictus oviposited preferentially in water. Females laid significantly more eggs during the NCB involving water than USEx. Also, significantly more mature eggs were retained by females in the NCB with USEx than in that with water. These observations strongly suggest the presence of molecules with either repellent or deterrent activities against Ae. albopictus females and provide an impetus to advocate the integration of used socks in dengue control programs. Such applications could be a realistic end-of-life recourse to reroute this waste from landfills.
Ingredients in home and personal care products, including UV filters and benzotriazoles, are high production volume chemicals extensively used in our daily life, despite several studies revealed their potential eco-toxicity and endocrine-disrupting capacity. Due to some features, such as high lipophilicity, low degradability, and persistence of many of these compounds, sediments can be considered a sink for them in the aquatic environment. In the present study, nine organic UV filters and three benzotriazoles were investigated for the first time in sediments from four urban rivers in Brazil. The contaminants were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results revealed that octocrylene (OC), etylhexyl-methoxycinnamate (EHMC), benzophenone-3 (oxybenzone, BP3), and benzotriazole (BZT) were the predominant compounds adsorbed on the sediments, with concentrations ranging from 5.6 to 322.2 ng g−1 dry weight. The results reported in this work constitute the first data on the accumulation of polar benzotriazoles and lipophilic organic UV filters in sediments from Brazil.
In this paper, we describe the development and laboratory and field evaluation of a continuous coarse (2.5-10 microm) particle mass (PM) monitor that can provide reliable measurements of the coarse mass (CM) concentrations in time intervals as short as 5-10 min. The operating principle of the monitor is based on enriching CM concentrations by a factor of approximately 25 by means of a 2.5-microm cut point round nozzle virtual impactor while maintaining fine mass (FM)--that is, the mass of PM2.5 at ambient concentrations. The aerosol mixture is subsequently drawn through a standard tapered element oscillating microbalance (TEOM), the response of which is dominated by the contributions of the CM, due to concentration enrichment. Findings from the field study ascertain that a TEOM coupled with a PM10 inlet followed by a 2.5-microm cut point round nozzle virtual impactor can be used successfully for continuous CM concentration measurements. The average concentration-enriched CM concentrations measured by the TEOM were 26-27 times higher than those measured by the time-integrated PM10 samplers [the micro-orifice uniform deposit impactor (MOUDI) and the Partisol] and were highly correlated. CM concentrations measured by the concentration-enriched TEOM were independent of the ambient FM-to-CM concentration ratio, due to the decrease in ambient coarse particle mass median diameter with an increasing FM-to-CM concentration ratio. Finally, our results illustrate one of the main problems associated with the use of real impactors to sample particles at relative humidity (RH) values less than 40%. While PM10 concentrations obtained by means of the MOUDI and Partisol were in excellent agreement, CM concentrations measured by the MOUDI were low by 20%, and FM concentrations were high by a factor of 5, together suggesting particle bounce at low RH. 相似文献
The Do?ana National Park (Spain), one of the most important wildlife sites in the West of Europe, was affected (25 April 1998) by the spill of acidic waste rich in toxic metals (mainly zinc, lead, copper, etc.), arsenic and aromatic amines from the Aznalcollar mine accident. Micronuclei test with May Grunwald-Giemsa and with CREST-antikinetocore staining using DAPI as counter-staining were performed on peripheral blood erythrocytes from Algerian mice to evaluate genotoxic damage. Animals were collected in four locations each differently affected by the disaster. Higher frequencies of micronuclei and CREST-positive micronuclei were observed in the sites, which were reached by toxic sludge and contaminated water in comparison with those located within the park. The results obtained applying the two methods indicate that DAPI staining is more sensitive in detecting micronuclei. Genotoxic biomonitoring should be further carried out in the area to control the mutagenetic level in natural populations. 相似文献