首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23869篇
  免费   212篇
  国内免费   221篇
安全科学   610篇
废物处理   1216篇
环保管理   2696篇
综合类   3063篇
基础理论   6001篇
环境理论   10篇
污染及防治   6887篇
评价与监测   1989篇
社会与环境   1694篇
灾害及防治   136篇
  2023年   134篇
  2022年   317篇
  2021年   355篇
  2020年   200篇
  2019年   243篇
  2018年   455篇
  2017年   461篇
  2016年   712篇
  2015年   459篇
  2014年   765篇
  2013年   2098篇
  2012年   917篇
  2011年   1133篇
  2010年   998篇
  2009年   929篇
  2008年   1086篇
  2007年   1193篇
  2006年   1026篇
  2005年   842篇
  2004年   821篇
  2003年   781篇
  2002年   750篇
  2001年   952篇
  2000年   673篇
  1999年   415篇
  1998年   293篇
  1997年   258篇
  1996年   299篇
  1995年   285篇
  1994年   259篇
  1993年   240篇
  1992年   247篇
  1991年   212篇
  1990年   219篇
  1989年   220篇
  1988年   199篇
  1987年   160篇
  1986年   128篇
  1985年   140篇
  1984年   170篇
  1983年   153篇
  1982年   194篇
  1981年   134篇
  1980年   121篇
  1979年   153篇
  1978年   119篇
  1977年   107篇
  1976年   100篇
  1975年   83篇
  1974年   88篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
Jin Y  Veiga MC  Kennes C 《Chemosphere》2007,68(6):1186-1193
Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.  相似文献   
992.
The catalytic activity and selectivity of manganese zirconia mixed oxides were evaluated for the oxidation of two common chlorinated pollutants found in waste streams, namely 1,2-dichloroethane (DCE) and trichloroethylene (TCE). Mixed oxides with varying Mn-Zr content were prepared by coprecipitation via nitrates, and subsequent calcination at 600 degrees C for 4 h in air. These catalysts were characterised by means of several techniques such as atomic emission spectrometry, N2 adsorption-desorption, powder X-ray diffraction, temperature-programmed desorption of ammonia, pyridine adsorption followed by diffuse reflectance infrared spectroscopy and temperature-programmed reduction with hydrogen. The active catalytic behaviour of Mn-Zr mixed oxides was ascribed to a substantial surface acidity combined with readily accessible active oxygen species. Hence, the mixed oxide with 40 mol% manganese content was found to be an optimum catalyst for the combustion of both chlorocarbons with a T50 value around 305 and 315 degrees C for DCE and TCE oxidation, respectively. The major oxidation products were carbon dioxide, hydrogen chloride and chlorine. It was observed that the formation of both CO2 and Cl2 was promoted with Mn loading.  相似文献   
993.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   
994.
Certain sludges generated by industry are rich in contaminating elements and are a major environmental problem. In this study, we determine the ability of these contaminating elements to be incorporated into a glass-matrix and in various mineral phases after a crystallization process. The contaminating elements studied were obtained from sewage sludges (SS) and galvanic sludges (GS), our raw materials. The sludge samples were taken from urban wastewater treatment plant in Catalonia (NE Spain) with high levels of phosphorus oxide (P(2)O(5)). In silica glasses, P(2)O(5) acts as a network former. We determined the chemical composition of both the SS and GS, as well as their thermal behaviour by differential thermal analysis and thermal gravimetric analysis (DTA-TG) to obtain their melting curves. The vitreous transition temperature of the obtained glass was established by dilatometer technique at 725 degrees C. The DTA-TG curve of the glass obtained has an exothermal wide peak at 860 degrees C corresponding to crystallization of the two phases: a spinel phase and a phosphate phase. A second exothermal wide peak at 960 degrees C was attributed to the crystallization of aluminium pyroxene, anorthite and fluor-apatite, with two exothermal phenomena attributed to the evolution of these phases. An exothermal peak at 1100 degrees C was attributed to gehlenite crystallization. Scanning electron microscope observations and energy-dispersed X-ray spectroscopy microanalyses of glass-ceramic showed that the contaminating elements were concentrated in the spinel phases, which are the first phases to crystallize during the cooling of glass. Finally, the spinel structure permits the incorporation of all the contaminating elements into it.  相似文献   
995.
Kuchar D  Fukuta T  Onyango MS  Matsuda H 《Chemosphere》2007,67(8):1518-1525
The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.  相似文献   
996.
Ku CS  Sathishkumar M  Mun SP 《Chemosphere》2007,67(8):1618-1627
Binding affinity of proanthocyanidin (PA) purified from Pinus radiata bark waste onto bovine Achilles tendon collagen (type I) was studied. Adsorption of PA onto the collagen was optimized by examining pH, contact time and temperature. The adsorption was pH-dependent. The maximum adsorption capacity (Q(0)) of PA on collagen was found to be 211 mg g(-1) using the Langmuir isotherm. Comparison between two adsorbents also showed that collagen had higher adsorptivity of approximately 20% more than PVPP (polyvinyl polypyrrolidone). The high affinity between PA and collagen was further confirmed in solvent solubility experiments. The observed solvent resistance was thought to be mainly due to a hydrophobic stacking mechanism reinforced by hydrogen bonding. FT-IR spectra clearly indicated the presence of PA adsorbed on collagen. The results have interesting implications that PA can be a good protective agent for collagen against collagenase and other enzymes.  相似文献   
997.
Bollmohr S  Day JA  Schulz R 《Chemosphere》2007,68(3):479-488
This study assesses the risk of current-use pesticides in a temporarily open estuary in South Africa by developing probabilistic risk estimates. Particle-associated pesticides (chlorpyrifos, prothiofos, cypermethrin, fenvalerate, endosulfan and p,p-DDE) and physicochemical parameters (salinity, temperature, flow, and total organic content (TOC)) were measured in the Lourens River estuary (Western Cape) twice a month over a period of two years and equilibrium partitioning theory was applied to calculate concentrations of pesticides in the water. The 90th percentile concentrations of pesticides associated to suspended particles and the calculated concentrations in water were 34.0microg kg(-1) and 0.15microg l(-1) for prothiofos, 19.6microg kg(-1) and 0.45microg l(-1) for chlorpyrifos and 18.6microg kg(-1) and 0.16microg l(-1) for endosulfan. Highest average concentrations were found around the summer season due to higher application rates and as a result of the low flow during this season. Species sensitivity distribution indicated a 1.5-2.8 times higher toxicity (hazardous concentration HC5) for marine organisms compared to freshwater organisms. The calculated concentrations in the water exceeded all threshold values suggested by international water guidelines. Chlorpyrifos and endosulfan posed the highest acute risk to the Lourens River estuary. No sufficient toxicity data and threshold values were found for prothiofos.  相似文献   
998.
In this work Paspalum notatum root material was used to elucidate the influence of acid leaching pre-treatment and of sorption medium on metal adsorption. Ground P. notatum root was leached with 0.14M HNO(3). Leached root material (LRM) and non-leached root material (NLRM) were employed to flow sorption of Ni(II), Cu(II), Al(III) and Fe(III) in 0.5M CH(3)COONH(4) medium at pH 6.5. For LRM the sorption was also studied in 0.5M KNO(3) medium. The acid pre-treatment increased the sorption capacity (SC) for all ions studied. For the KNO(3) medium, Cu(II) and Fe(III) sorption was higher than in CH(3)COONH(4) and the type of the Ni(II) isotherm's model changed. The Freundlich model was the most representative isotherm model to describe metallic ions sorption. The (1)H NMR spectra showed differences between LRM and NLRM and the acid-basic potentiometric titration elucidated that acid-leaching procedure affected the root material sorption sites once only two predominant sorption sites were found for LRM (phenolic and amine, both able cations sorption) and five sorption sites (two carboxylic, amine and two phenolic) were founded for NLRM.  相似文献   
999.
Minaberry YS  Gordillo GJ 《Chemosphere》2007,69(9):1465-1473
The cadmium binding properties of waters of the superior section of the Rio de la Plata estuarine were determined over a three-year period. Samples were collected at different hydrodynamic conditions. The complexing capacity was determined by square wave anodic stripping voltammetry (SWASV). Titration curve data were analyzed using a multivariable regression. Suspended particulate matter (SPM) was identified by XR diffraction and FTIR. These analyses showed that SPM principal components are clays (illite, montmorillonite and chlorite). The study was applied to the untreated, filtered and centrifuged fractions of each sample at the pH of the natural waters and at pH 1. The results show that the contribution of dissolved organic matter to the complexing capacity is negligible when compared with SPM. At natural pH, the complexing capacity of filtered and untreated fractions can be described by considering two kinds of binding sites. The associated conditional binding constants are independent of the concentration of suspended matter. Their average logarithms are ca. 6.5 and ca. 4.4. The total concentration of binding sites (S(T)) is in microM range, which is about three orders of magnitude higher than that reported for most of the studied estuaries. This difference is explained on the basis of the great amount of SPM. Hydrodynamic conditions produce variations in the concentration and composition of the SPM. At pH 1 samples still exhibit an important complexing capacity with only one binding site with log K(cond) ca. 5.4. These differences could be attributed to superficial modifications that take place at very low pH.  相似文献   
1000.
Li Z  Kirk Jones H  Zhang P  Bowman RS 《Chemosphere》2007,68(10):1861-1866
Chromate transport through columns packed with zeolite/zero valent iron (Z/ZVI) pellets, either untreated or treated with the cationic surfactant hexadecyltrimethylammonium (HDTMA), was studied at different flow rates. In the presence of sorbed HDTMA, the chromate retardation factor increased by a factor of five and the pseudo first-order rate constant for chromate reduction increased by 1.5-5 times. The increase in rate constant from the column studies was comparable to a six-fold increase in the rate constant determined in a batch study. At a fast flow rate, the apparent delay in chromate breakthrough from the HDTMA modified Z/ZVI columns was primarily caused by the increase in chromate reduction rate constant. In contrast, at a slower flow rate, the retardation in chromate transport from the HDTMA modified Z/ZVI columns mainly originated from chromate sorption onto the HDTMA modified Z/ZVI pellets. Due to dual porosity, the presence of immobile water was responsible for the earlier breakthrough of chromate in columns packed with zeolite and Z/ZVI pellets. The results from this study further confirm the role of HDTMA in enhancing sorption and reduction efficiency of contaminants in groundwater remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号