首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
  国内免费   2篇
安全科学   1篇
废物处理   9篇
环保管理   4篇
综合类   4篇
基础理论   10篇
污染及防治   21篇
评价与监测   7篇
社会与环境   5篇
灾害及防治   1篇
  2023年   5篇
  2022年   8篇
  2021年   8篇
  2019年   1篇
  2016年   6篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2005年   1篇
  2003年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有62条查询结果,搜索用时 46 毫秒
31.
Stress-strain response of plastic waste mixed soil   总被引:1,自引:0,他引:1  
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations.  相似文献   
32.

This article investigates the suitability of utilizing end of life rubber tyre particles in concrete as fine aggregate. Rubber ash and rubber fibers were used to develop two series of rubber ash concrete (series I) and hybrid concrete (series II) mixes. The natural fine aggregate was replaced by rubber ash (by volume of 5%, 10%, 15% and 20%) in series I; whereas in series II, the amount of rubber ash was kept constant at 10% and rubber fiber was introduced as replacement of fine aggregate (by volume of 5%, 10%, 15%, 20% and 25%). The concrete mixes were evaluated for compressive strength, flexural strength, resistance to impact loading, fatigue loading, water penetration and shrinkage strain was evaluated. It was observed that inclusion of rubber ash resulted in the improvement of impact resistance of concrete. The results also show that up to 10% rubber ash and rubber fibers can be utilized as fine aggregate to develop feasible and durable rubberized concrete pavements, crash barriers and paver blocks.

  相似文献   
33.
As ecological data and associated analyses become more widely available, synthesizing results for effective communication with stakeholders is essential. In the case of wildlife corridors, managers in human-dominated landscapes need to identify both the locations of corridors and multiple stakeholders for effective oversight. We synthesized five independent studies of tiger (Panthera tigris) connectivity in central India, a global priority landscape for tiger conservation, to quantify agreement on landscape permeability for tiger movement and potential movement pathways. We used the latter analysis to identify connectivity areas on which studies agreed and stakeholders associated with these areas to determine relevant participants in corridor management. Three or more of the five studies’ resistance layers agreed in 63% of the study area. Areas in which all studies agree on resistance were of primarily low (66%, e.g., forest) and high (24%, e.g., urban) resistance. Agreement was lower in intermediate resistance areas (e.g., agriculture). Despite these differences, the studies largely agreed on areas with high levels of potential movement: >40% of high average (top 20%) current-flow pixels were also in the top 20% of current-flow agreement pixels (measured by low variation), indicating consensus connectivity areas (CCAs) as conservation priorities. Roughly 70% of the CCAs fell within village administrative boundaries, and 100% overlapped forest department management boundaries, suggesting that people live and use forests within these priority areas. Over 16% of total CCAs’ area was within 1 km of linear infrastructure (437 road, 170 railway, 179 transmission line, and 339 canal crossings; 105 mines within 1 km of CCAs). In 2019, 78% of forest land diversions for infrastructure and mining in Madhya Pradesh (which comprises most of the study region) took place in districts with CCAs. Acute competition for land in this landscape with globally important wildlife corridors calls for an effective comanagement strategy involving local communities, forest departments, and infrastructure planners.  相似文献   
34.
Environmental Science and Pollution Research - Himalaya, the highest mountain system in the world and house of important biodiversity hotspot, is sensitive to projected warming by climate change....  相似文献   
35.
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis.  相似文献   
36.
Environmental Science and Pollution Research - The world has never been prepared for global pandemics like the COVID-19, currently posing an immense threat to the public and consistent pressure on...  相似文献   
37.
Environmental Science and Pollution Research - Nutrition plays a significant role in the prevention and treatment of common diseases. Some superb dietary choices such as functional foods and...  相似文献   
38.
Environmental Science and Pollution Research - A lot of research is being carried out to reduce the environmental pollution resulting from compression ignition engines. For this, various gaseous...  相似文献   
39.
40.

Biofuels extracted from plant biomass can be used as fuel in CI engines to lower a hazardous atmospheric pollutant and mitigate climate risks. Furthermore, its implementation is hampered by inevitable obstacles such as feedstocks and the crop area required for their cultivation, leading to a lack of agricultural land for the expansion of food yields. Despite this, microalgae have been discovered to be the most competent and unwavering source of biodiesel due to their distinguishing characteristics of being non-eatable and requiring no cropland for cultivation. The objectives of this paper was to look into the potential of a novel, formerly underappreciated biodiesel from microalgae species which could be used as a fuel substitute. Transesterification is being used to extract the biodiesel. Microalgae are blended with petroleum diesel in percentage to create microalgae blends (MAB) as needed for experimentation. The impact of biodiesel on performance as well as exhaust emission attributes of a 1-cylinder diesel engine was experimentally studied. Compared to petroleum diesel, different blend of microalgae biodiesel showed a decline in torque and hence brake power, resulting in an average fall of 7.14 % in brake thermal efficiency and 11.54 % increase in brake-specific fuel consumption. There were wide differences in exhaust emission characteristics, including carbon monoxide and hydrocarbon, as the blend ratio in diesel increased. Moreover, nitrogen oxides and carbon dioxides increase in all algae biodiesel blends, but they are still within the acceptable range of petroleum diesel.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号