首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1078篇
  免费   29篇
  国内免费   9篇
安全科学   71篇
废物处理   37篇
环保管理   292篇
综合类   84篇
基础理论   309篇
环境理论   3篇
污染及防治   189篇
评价与监测   84篇
社会与环境   42篇
灾害及防治   5篇
  2023年   10篇
  2022年   13篇
  2021年   16篇
  2020年   16篇
  2019年   12篇
  2018年   25篇
  2017年   31篇
  2016年   41篇
  2015年   26篇
  2014年   33篇
  2013年   73篇
  2012年   52篇
  2011年   73篇
  2010年   49篇
  2009年   42篇
  2008年   61篇
  2007年   67篇
  2006年   60篇
  2005年   41篇
  2004年   45篇
  2003年   46篇
  2002年   35篇
  2001年   21篇
  2000年   12篇
  1999年   20篇
  1998年   17篇
  1997年   15篇
  1996年   20篇
  1995年   22篇
  1994年   15篇
  1993年   13篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
  1968年   1篇
  1938年   1篇
排序方式: 共有1116条查询结果,搜索用时 15 毫秒
141.
Although significant resources are being spent researching and fostering the relationship between forests and livelihoods to promote mutually beneficial outcomes, critical gaps in understanding persist. A core reason for such gaps is that researchers, practitioners, and policy makers lack the structured space to interact and collaborate, which is essential for effective, interdisciplinary research, practice, and evaluation. Thus, scientific findings, policy recommendations, and measured outcomes have not always been synthesized into deep, systemic understanding; learning from practice and implementation does not easily find its way into scientific analyses, and science often fails to influence policy. Communities of practice (CofPs) are dynamic sociocultural systems that bring people together to share and create knowledge around a common topic of interest. They offer participants a space and structure within which to develop new, systemic approaches to multidimensional problems on a common theme. Uniquely informed by a systems‐thinking perspective and drawing from the scientific and gray literatures and in‐depth interviews with representatives of established CofPs in the natural resource management and development domain, we argue that a well‐designed and adequately funded CofP can facilitate interdisciplinary and cross‐sectoral relationships and knowledge exchange. Well‐designed CofPs integrate a set of core features and processes to enhance individual, collective, and domain outcomes; they set out an initial but evolving purpose, encourage diverse leadership, and promote collective‐identity development. Funding facilitates effective communication strategies (e.g., in person meetings). We urge our colleagues across sectors and disciplines to take advantage of CofPs to advance the domain of forests and livelihoods.  相似文献   
142.
Manure-derived biochar is the solid product resulting from pyrolysis of animal manures. It has considerable potential both to improve soil quality with high levels of nutrients and to reduce contaminants in water and soil. However, the combustible gas produced from manure pyrolysis generally does not provide enough energy to sustain the pyrolysis process. Supplementing this process may be achieved with spent agricultural plastic films; these feedstocks have large amounts of available energy. Plastic films are often used in soil fumigation. They are usually disposed in landfills, which is wasteful, expensive, and environmentally unsustainable. The objective of this work was to investigate both the energetics of co-pyrolyzing swine solids with spent plastic mulch films (SPM) and the characteristics of its gas, liquid, and solid byproducts. The heating value of the product gas from co-pyrolysis was found to be much higher than that of natural gas; furthermore, the gas had no detectable toxic fumigants. Energetically, sustaining pyrolysis of the swine solids through the energy of the product gas could be achieved by co-pyrolyzing dewatered swine solids (25% m/m) with just 10% SPM. If more than 10% SPM is used, the co-pyrolysis would generate surplus energy which could be used for power generation. Biochars produced from co-pyrolyzing SPM and swine solid were similar to swine solid alone based on the surface area and the 1H NMR spectra. The results of this study demonstrated the potential of using pyrolysis technology to manage two prominent agricultural waste streams (SPM and swine solids) while producing value-added biochar and a power source that could be used for local farm operations.  相似文献   
143.
Wang, Jinxia, Jikun Huang, Lijuan Zhang, Qiuqiong Huang, and Scott Rozelle, 2010. Water Governance and Water Use Efficiency: The Five Principles of WUA Management and Performance in China. Journal of the American Water Resources Association (JAWRA) 46(4): 665-685. DOI: 10.1111/j.1752-1688.2010.00439.x Abstract: In recent years China has attempted to reform water management by decentralizing water management responsibilities. The overall goal of our paper is to better understand the emergence of water user associations (WUAs) in China and assess if they are adhering to the practices spelled out by the Five Principles, a set of recommended practices that are supposed to lead to successful WUA operation. Using four sets of different types of villages to examine implementation and performance, we find that World Bank-supported WUA villages (“Bank villages”) can be thought of as operating mostly according to the Five Principles. For example, the Bank villages were endowed with a more reliable water supply; were set up and were operating with a relatively high degree of farmer participation; and leaders were more consultative and the process more formal. When WUAs are run according to the Five Principals, we show that WUAs increase water use efficiency. The study also provides evidence that there is a perception in the Bank villages that water management is improving in general and that there is less conflict both within the village and among villages. Perhaps more importantly, we find that the Bank’s effort to promote WUAs extended beyond their own project villages. The openness, consultative nature, and transparency found in the Bank WUAs are also found (albeit at a somewhat lower level) in the non-Bank WUA villages.  相似文献   
144.
Indicators are used to draw conclusions about ecological endpoints when these endpoints cannot be measured directly. In many cases, inferences about an endpoint are only possible because assumptions have been made about the relationship between indicator and endpoint; we refer to such indicators as judgement indicators. The validity of inferences made using a judgement indicator can be gauged by examining the known or assumed form of the general relationship between indicator and endpoint. The rules for this kind of inference are a consequence of scale invariance, which originates from measurement theory. For simple indicators comprised of a single indicator measurement, the inferences allowed – equivalence, rank, equality of intervals, and equality of ratios – depend on whether the data are nominal, ordinal, interval, or ratio scaled. For composite indicators containing two or more simple indicators, inferences are also affected by the mathematical form of combination; e.g., whether the terms are summed or multiplied. Standardizing simple or composite indicators can allow inferences about the relative importance of observations, based on the natural range of occurrence. Scale invariance is a particularly important consideration in landscape assessments, since these often make use of judgement indicators.  相似文献   
145.
Air quality sensors are becoming increasingly available to the general public, providing individuals and communities with information on fine-scale, local air quality in increments as short as 1 min. Current health studies do not support linking 1-min exposures to adverse health effects; therefore, the potential health implications of such ambient exposures are unclear. The U.S. Environmental Protection Agency (EPA) establishes the National Ambient Air Quality Standards (NAAQS) and Air Quality Index (AQI) on the best science available, which typically uses longer averaging periods (e.g., 8 hr; 24 hr). Another consideration for interpreting sensor data is the variable relationship between pollutant concentrations measured by sensors, which are short-term (1 min to 1 hr), and the longer term averages used in the NAAQS and AQI. In addition, sensors often do not meet federal performance or quality assurance requirements, which introduces uncertainty in the accuracy and interpretation of these readings. This article describes a statistical analysis of data from regulatory monitors and new real-time technology from Village Green benches to inform the interpretation and communication of short-term air sensor data. We investigate the characteristics of this novel data set and the temporal relationships of short-term concentrations to 8-hr average (ozone) and 24-hr average (PM2.5) concentrations to examine how sensor readings may relate to the NAAQS and AQI categories, and ultimately to inform breakpoints for sensor messages. We consider the empirical distributions of the maximum 8-hr averages (ozone) and 24-hr averages (PM2.5) given the corresponding short-term concentrations, and provide a probabilistic assessment. The result is a robust, empirical comparison that includes events of interest for air quality exceedances and public health communication. Concentration breakpoints are developed for short-term sensor readings such that, to the extent possible, the related air quality messages that are conveyed to the public are consistent with messages related to the NAAQS and AQI.

Implications: Real-time sensors have the potential to provide important information about fine-scale current air quality and local air quality events. The statistical analysis of short-term regulatory and sensor data, coupled with policy considerations and known health effects experienced over longer averaging times, supports interpretation of such short-term data and efforts to communicate local air quality.  相似文献   

146.
Explosions will, in most cases, generate blast waves. While simple models (e.g., Multi Energy Method) are useful for simple explosion geometries, most practical explosions are far from trivial and require detailed analyses. For a reliable estimate of the blast from a gas explosion it is necessary to know the explosion strength. The source explosion may not be symmetric; the pressure waves will be reflected or deflected when hitting objects, or even worse, the blast waves may propagate inside buildings or tunnels with a very low rate of decay. The use of computational fluid dynamics (CFD) explosion models for near and far field blast wave predictions has many advantages. These include more precise estimates of the energy and resulting pressure of the blast wave, as well as the ability to evaluate non-symmetrical effects caused by realistic geometries, gas cloud variations and ignition locations. This is essential when evaluating the likelihood of a given leak source as cause of an explosion or equally when evaluating the potential risk associated with a given leak source for a consequence analysis.In addition, unlike simple methods, CFD explosion models can also evaluate detailed dynamic effects in the near and far field, which include time dependent pressure loads as well as reflection and focusing of the blast waves. This is particularly valuable when assessing actual near-field blast damage during an explosion investigation or potential near-field damage during a risk analysis for a facility. One main challenge in applying CFD, however, is that these models require more information about the actual facility, including geometry details and process information. Collecting the necessary geometry and process data may be quite time consuming. This paper will show some blast prediction validation examples for the CFD model FLACS. It will also provide examples of how directional effects or interaction with objects can significantly influence the dynamics of the blast wave. Finally, the challenge of obtaining useful predictions with insufficient details regarding the geometry will also be addressed.  相似文献   
147.
Phytochelatins (PCs) were determined in the wild plants, focusing on their relationship with the levels of heavy metals and humic substances (HS) in soil. Ricinus communis and Tithonia diversifolia were collected from several sites in Guanajuato city (Mexico), which had long been the silver and gold mining center. The analysis of PCs in root extracts was carried out by liquid chromatography (derivatization with monobromobimane). Total Ag, Cd, Cu and Pb in plant roots and in soil samples, as well as soil HS were determined. The association of metals with HS in soils was evaluated by size exclusion chromatography (SEC) with UV and ICP-MS detection. The results obtained revealed the induction of PCs in R. communis but not in T. diversifolia. The levels of Cd and Pb in plant roots presented strong positive correlation with PC-2 (r = 0.9395, p = 0.005; r = 0.9573, p = 0.003, respectively), indicating that these two metals promote PCs induction in R. communis. On the other hand, the inverse correlation was found between soil HS and metal levels in roots of R. communis (Cu > Pb > Cd > Ag), in agreement with the decreasing affinity of these metals to HS. Importantly, the inverse correlation between soil HS and plant PC-2 was observed (r = −0.7825, p = 0.066). These results suggest that metals strongly bound to HS could be less bioavailable to plants, which in turn would limit their role in the induction of PCs. Indeed, the SEC elution profiles showed Pb but not Cd association with HS and the correlation between metal in soil and PC-2 in plant was statistically significant only for Cd (r = 0.7857, p = 0.064). Based on these results it is proposed that the role of heavy metals in PCs induction would depend on their uptake by R. communis, which apparently is controlled by the association of metals with soil HS. This work provides further evidence on the role of environmental conditions in the accumulation of heavy metals and phytochelatin production in plants.  相似文献   
148.
149.
In the spring and summer of 2017, communities along the Lake Ontario shoreline suffered from the worst flood event on record. In late May, daily water levels reached their highest point in over 100 years, and flooding continued throughout much of the summer as lake levels slowly declined, with inundation and erosion significantly impacting shoreline homes and businesses. In this work, we present results from a rapid response online survey of property owners along the New York Lake Ontario shoreline to quantify the perceived flood impacts of the 2017 extended high water event. The survey focused on the degree and spatial distribution of inundation and erosion; the duration and drivers of inundation; the associated damages to different property features, with an emphasis on shoreline protection; and the degree of disruption to business and other activities and services. Photographic documentation of inundation extent and property damage also was provided by survey respondents. We demonstrate the potential utility of this dataset by characterizing key features of inundation and erosion impacts across the shoreline, and by using classification and regression trees to explore the predictability of inundation and erosion based on property characteristics. This work is part of a larger effort to develop models of inundation and erosion that can support flood impact assessments across the shoreline and help communities better prepare for future extended high water events.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号