首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6134篇
  免费   32篇
  国内免费   204篇
安全科学   152篇
废物处理   333篇
环保管理   579篇
综合类   973篇
基础理论   1862篇
环境理论   2篇
污染及防治   1682篇
评价与监测   423篇
社会与环境   351篇
灾害及防治   13篇
  2023年   17篇
  2022年   71篇
  2021年   45篇
  2020年   25篇
  2019年   39篇
  2018年   225篇
  2017年   164篇
  2016年   255篇
  2015年   135篇
  2014年   101篇
  2013年   284篇
  2012年   509篇
  2011年   364篇
  2010年   162篇
  2009年   180篇
  2008年   206篇
  2007年   250篇
  2006年   204篇
  2005年   507篇
  2004年   670篇
  2003年   542篇
  2002年   156篇
  2001年   277篇
  2000年   161篇
  1999年   101篇
  1998年   44篇
  1997年   56篇
  1996年   36篇
  1995年   50篇
  1994年   46篇
  1993年   43篇
  1992年   33篇
  1991年   42篇
  1990年   31篇
  1989年   36篇
  1988年   20篇
  1987年   17篇
  1986年   18篇
  1985年   15篇
  1984年   18篇
  1983年   22篇
  1982年   22篇
  1981年   16篇
  1980年   11篇
  1979年   13篇
  1978年   12篇
  1975年   14篇
  1973年   10篇
  1972年   12篇
  1966年   8篇
排序方式: 共有6370条查询结果,搜索用时 703 毫秒
341.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   
342.
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.  相似文献   
343.
Adsorption-desorption characteristics of mercury in paddy soils of China   总被引:1,自引:0,他引:1  
Mercury (Hg) has received considerable attention because of its association with various human health problems. Adsorption-desorption behavior of Hg at contaminated levels in two paddy soils was investigated. The two representative soils for rice production in China, locally referred to as a yellowish red soil (YRS) and silty loam soil (SLS) and classified as Gleyi-Stagnic Anthrosols in FAO/UNESCO nomenclature, were respectively collected from Jiaxin County and Xiasha District of Hangzhou City, Zhejiang Province. The YRS adsorbed more Hg(2+) than the SLS. The characteristics of Hg adsorption could be described by the simple Langmuir adsorption equation (r2 = 0.999 and 0.999, P < 0.01, respectively, for the SLS and YRS). The maximum adsorption values (Xm) that were obtained from the simple Langmuir model were 111 and 213 mg Hg(2+) kg(-1) soil, respectively, for the SLS and YRS. Adsorption of Hg(2+) decreased soil pH by 0.75 unit for the SLS soil and 0.91 unit for the YRS soil at the highest loading. The distribution coefficient (kd) of Hg in the soil decreased exponentially with increasing Hg(2+) loading. After five successive desorptions with 0.01 mol L(-1) KCl solution (pH 5.4), 0 to 24.4% of the total adsorbed Hg(2+) in the SLS soil was desorbed and the corresponding value of the YRS soil was 0 to 14.4%, indicating that the SLS soil had a lower affinity for Hg(2+) than the YRS soil at the same Hg(2+) loading. Different mechanisms are likely involved in Hg(2+) adsorption-desorption at different levels of Hg(2+) loading and between the two soils.  相似文献   
344.
Currently, limited research on the fate of antimicrobials in the environment exists, once they are discharged in human and animal wastes. Sorption of two antimicrobials, sulfadimethoxine (SDM) and ormetoprim (OMP), was investigated in two soils and sand using a series of batch experiments. Because OMP and SDM are often administered in combination, their sorption was also investigated in combination as co-solutes. The rate of SDM and OMP sorption was rapid over the first few hours of the experiments, which then slowed considerably after 16 to 68 h. OMP sorption was enhanced at high concentrations when in combination with SDM, with linear sorption coefficients ranging from 1.3 to 58.3 L.kg(-1) in the single solute experiments and 4.96 to 89.7 L.kg(-1) in the co-solute experiments. Sorption of OMP as a single solute seems to provide a better fit with the Freundlich equation, which became more linear (n approached 1) when SDM was present. Overall, SDM sorbed less than OMP in the two soils and sand. SDM linear sorption coefficients ranged from 0.4 to 25.8 L.kg(-1) as a single solute and 2.5 to 22.1 L.kg(-1) as a co-solute. Sorption of SDM becomes more nonlinear (n < 1) when SDM is present in combination with OMP. Overall, sorption of both antimicrobials increased in the selected soils and sand as the organic matter, clay content, and cation exchange capacity increased. These experiments indicate relatively low sorption of SDM and OMP in natural soils, making them a potential threat to surface and ground water.  相似文献   
345.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   
346.
Cheng KY  Lai KM  Wong JW 《Chemosphere》2008,73(5):791-797
This paper evaluates the effects of pig manure compost (PMC) and Tween 80 on the removal of phenanthrene (PHE) and pyrene (PYR) from soil cultivated with Agropyron elongatum. Soils spiked with about 300mgkg(-1) of PHE and PYR were individually amended with 0%, 2.5%, 5% and 7.5% (dry wt) of PMC or 0, 20 and 100mgkg(-1) of Tween 80. Unplanted and sterile microcosms were prepared as the controls. PAH concentration, total organic matter (TOM), dissolved organic carbon (DOC), total heterotrophic and PAH degrading microbial populations in soil were quantified before and after 60d period. The results indicated that A. elongatum could significantly enhance PYR removal (from 46% to 61%) but had less impact on PHE removal (from 96% to 97%). Plant uptake of the PAHs was insignificant. Biodegradation was the key mechanism of PAH removals (<3% losses in the sterile control). Increase in PMC or Tween 80 levels increased the removal of PYR but not of PHE. Maximal PYR removal of 79% and 92% were observed in vegetated soil receiving 100mgkg(-1) Tween 80 and 7.5% PMC, respectively. Enhanced PYR removal in soil receiving PMC could be explained by the elevated levels of DOC, TOM and microbial populations as suggested by Pearson correlation test. While the positive effect of Tween 80 on PYR removal could probably due to its capacities to enhance PYR bioavailability in soil. This paper suggests that the addition of either PMC or nonionic-surfactant Tween 80 could facilitate phytoremediation of PAH contaminated soil.  相似文献   
347.
Liu W  Yang YS  Francis D  Rogers HJ  Li P  Zhang Q 《Chemosphere》2008,73(7):1138-1144
Cadmium (Cd) is a non essential element, and is a widespread environmental pollutant. Exposure to Cd can result in a variety of adverse health effects in plant and humans. In the current study, Arabidopsis seedlings were used as a bio-indicator of Cd pollution. Seedlings were grown on MS media containing 0-6.0 mg L(-1) Cd for 18 days, and the gene expression patterns were used to link increased Cd exposure with progressive biological effects. Reduction of total soluble protein content in shoots of the Arabidopsis seedlings occurred with increase in Cd concentrations. For the gene expression patterns, seven genes known to be involved in cell division and DNA mismatch repair (MMR) system were investigated by semi-quantitative RT-PCR, and normalized using 18S rRNA gene expression. Expression of the proliferating cell nuclear antigen 2 (atPCNA 2), MutS 3 homolog (atMSH 3) and MutL1 homolog (atMLH1) genes in shoots of Arabidopsis was strongly induced by exposure to 0.75 mg L(-1) Cd, but were repressed by other Cd concentrations whereas exposure to 0.75-6 mg L(-1) of Cd resulted in a decreased expression of atPCNA1, atMSH 2, 6 and 7 genes independently of any observable biological effects, including survival, fresh weight and chlorophyll level of shoots. This work demonstrated that specific gene expression changes could serve as useful molecular biomarkers indicative of Cd exposure and related biological effects.  相似文献   
348.
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.  相似文献   
349.
High temperature alkaline chemical liquids have caused injuries and hazardous situations in Finnish pulp manufacturing mills. There are no requirements and/or test method standards concerning protection against high temperature alkaline chemical splashes. This paper describes the test method development process to test and identify materials appropriate for hot liquid chemical hazard protection. In the first phase, the liquid was spilled through a stainless steel funnel and the protection performance was evaluated using a polyvinyl chloride (PVC) film under the test material. After several tentative improvements, a graphite crucible was used for heating and spilling the chemical, and a copper-coated K-type thermometer with 4 independent measuring areas was designed to measure the temperature under the material samples. The thermometer was designed to respond quickly so that peak temperatures could be measured. The main problem was to keep the spilled amount of chemical constant, which unfortunately resulted in significant variability in data.  相似文献   
350.
Municipal solid waste (MSW) generation and management in Cuba was studied with a view to integrating composting of the organic fractions of MSW into the system. Composting is already included as part of the environmental strategy of the country as an appropriate waste management solution. However, no programme for area-wide implementation yet exists. The evaluation of studies carried out by some Cuban and international organisations showed that organic matter comprises approximately 60-70% of the MSW, with households being the main source. If all organic waste fractions were considered, the theoretical amount of organic waste produced would be approximately 1 Mio. Mg/a, leading to the production of approximately 0.5 Mio. Mg/a of compost. Composting could, therefore, be a suitable solution for treating the organic waste fractions of the MSW. Composting would best be carried out in decentralised systems, since transportation is a problem in Cuba. Furthermore, low technology and low budget composting options should be considered due to the problematic local economic situation. The location for such decentralised composting units would optimally be located at urban agricultural farms, which can be found all over Cuba. These farms are a unique model for sustainable farming in the world, and have a high demand for organic fertiliser. In this paper, options for the collection and impurity-separation in urban areas are discussed, and a stepwise introduction of source-separation, starting with hotel and restaurant waste, is suggested. For rural areas, the implementation of home composting is recommended.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号