首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   1篇
  国内免费   2篇
安全科学   5篇
废物处理   1篇
环保管理   12篇
综合类   15篇
基础理论   16篇
污染及防治   32篇
评价与监测   13篇
社会与环境   9篇
灾害及防治   1篇
  2023年   1篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2013年   13篇
  2012年   10篇
  2011年   12篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1964年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有104条查询结果,搜索用时 312 毫秒
91.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   
92.
We conducted a laboratory study to assess the feasibility of a washing process with nonionic and anionic surfactants in combination with ethylenediaminetetraacetate (EDTA) for the simultaneous mobilization of heavy metals and polychlorinated biphenyls (PCBs) from a field-contaminated soil. Unit processes consisting of complexometric extraction and surfactant-assisted mobilization were combined with reagent regeneration and detoxification steps to generate innocuous products. Ten minutes of ultrasonic mixing of the soil with a combination of 30 mL L(-1) surfactant suspension and a sparing quantity (2 mmol) of EDTA mobilized appreciable quantities of PCBs, virtually all of the available Cd, Cu, Mn, and Pb, and lesser amounts of the Zn, Ni, and Cr but only small quantities of Al and Fe. Relative to individual reagents, combinations of surfactant (Brij 98, Triton X-301, or Triton XQS-20) with EDTA did not influence PCB extraction efficiencies perceptibly. Of the three surfactants, the Brij 98 proved to be the most efficient for three successive extractions with a single charge, mobilizing 83% of the PCBs, whereas companion extractions that used fresh reagent each time mobilized 87% of the soil PCB content. The decreased PCB mobilization with the same quantity of anionic surfactant (71 or 68%) resulted from losses during the EDTA regeneration process with zero-valent Mg. In toto, these studies demonstrate that PCB compounds and selected heavy metals can be coextracted efficiently from soil with three successive washes with the same washing suspension containing EDTA and a nonionic surfactant.  相似文献   
93.
We conducted a laboratory study to assess the efficiency of nonionic and anionic surfactants in combination with a sparing quantity of ethylenediaminetetraacetate (EDTA) to simultaneously extract heavy metals (HMs) and polychlorinated biphenyl (PCB) compounds from a field-contaminated soil. A soil wash that mobilized both HMs and PCBs was combined with back-extraction with hexane to remove PCBs from the aqueous wash. The aqueous washing suspension was then regenerated by precipitation of the HMs induced by corrosion and hydrolysis of zero-valent Mg to provide a cleaned soil and innocuous extract. Finally, the washing suspension was recycled twice to mobilize more contaminants from the soil particulate fraction. After ultrasonic equilibration, EDTA in admixture with a nonionic surfactant did not appreciably change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe Mn, Ni, and Zn), but did increase the recovery of Cu and Pb. The release of EDTA from HM complexes was efficient for most metals (99%) but was influenced by the chemical characteristics of the surfactant. The EDTA recovery (62-65%) after three cycles of soil washing, hexane back-extraction, and Mg(0) treatment was similar for all reagent combinations. In toto, these studies demonstrate that after treatment with ultrasound, selected heavy metals can be coextracted efficiently from soil with a single washing suspension containing EDTA and a nonionic surfactant.  相似文献   
94.
Temporal variation of radon-222 concentration was studied at the Syabru-Bensi hot springs, located on the Main Central Thrust zone in Central Nepal. This site is characterized by several carbon dioxide discharges having maximum fluxes larger than 10 kg m−2 d−1. Radon concentration was monitored with autonomous Barasol™ probes between January 2008 and November 2009 in two small natural cavities with high CO2 concentration and at six locations in the soil: four points having a high flux, and two background reference points. At the reference points, dominated by radon diffusion, radon concentration was stable from January to May, with mean values of 22 ± 6.9 and 37 ± 5.5 kBq m−3, but was affected by a large increase, of about a factor of 2 and 1.6, respectively, during the monsoon season from June to September. At the points dominated by CO2 advection, by contrast, radon concentration showed higher mean values 39.0 ± 2.6 to 78 ± 1.4 kBq m−3, remarkably stable throughout the year with small long-term variation, including a possible modulation of period around 6 months. A significant difference between the diffusion dominated reference points and the advection-dominated points also emerged when studying the diurnal S1 and semi-diurnal S2 periodic components. At the advection-dominated points, radon concentration did not exhibit S1 or S2 components. At the reference points, however, the S2 component, associated with barometric tide, could be identified during the dry season, but only when the probe was installed at shallow depth. The S1 component, associated with thermal and possibly barometric diurnal forcing, was systematically observed, especially during monsoon season. The remarkable short-term and long-term temporal stability of the radon concentration at the advection-dominated points, which suggests a strong pressure source at depth, may be an important asset to detect possible temporal variations associated with the seismic cycle.  相似文献   
95.
The variations of Cl???, F???, and Fe?+?+? in the underground water during pre- and post-monsoon periods for 2003 have been examined, for two places in Unnao district, by argentrometric titration method (Sodic Land Reclamation Project Uttar Pradesh 1998) and atomic absorption spectrometry (Sodic Land Reclamation Project Uttar Pradesh 1998). The concentration of these ions falls outside the limits prescribed by the World Health Organization (WHO 1984).  相似文献   
96.
We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L?1) in a first year (group I) and for participants using water lower in arsenic (<50 μg L?1) in the next year (group II). Participants with and without arsenical skin lesions were considered in the statistical analysis. Median dose of arsenic intake through drinking water in groups I and II males was 7.44 and 0.85 μg kg body wt.?1 day?1 (p <0.0001). In females, it was 5.3 and 0.63 μg kg body wt.?1 day?1 (p <0.0001) for groups I and II, respectively. Arsenic dose through diet was 3.3 and 2.6 μg kg body wt.?1 day?1 (p?=?0.088) in males and 2.6 and 1.9 μg kg body wt.?1 day?1 (p?=?0.0081) in females. Median arsenic levels in urine of groups I and II males were 124 and 61 μg L?1 (p?=?0.052) and in females 130 and 52 μg L?1 (p?=?0.0001), respectively. When arsenic levels in the water were reduced to below 50 μg L?1 (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.?1 day?1 (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.  相似文献   
97.

Introduction

A biosorbent was developed by simple dried Agaricus bisporus (SDAB) and effectively used for the biosorption of cationic dyes, Crystal Violet and Brilliant Green.

Materials and methods

For the evaluation of the biosorbent system, all the batch equilibrium parameters like pH, biomass dose, contact time, and temperature were optimized to determine the decolorization efficiency of the biosorbent. The maximum yields of dye removal were achieved at pH 4.0 for Crystal Violet (CV) and pH 5.0 for Brilliant Green (BG), which are closer to their natural pH also.

Result and discussion

Equilibrium was established at 60 and 40 min for CV and BG, respectively. Pseudo first-order, pseudo second-order, and intraparticle-diffusion kinetic models were studied at different temperatures. Isotherm models such as Freundlich, Langmuir, and Dubinin–Radushkevich were also studied. Biosorption processes were successfully described by Langmuir isotherm model and the pseudo second-order kinetic model.

Conclusions

The biosorption capacity of A. bisporus over CV and BG were found as 21.74 and 12.16 mg gm?1. Thermodynamic parameters indicated that the CV and BG dye adsorption onto A. bisporus is spontaneous and exothermic in the single and ternary systems. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy were used for the surface morphology, crystalline structure of biosorbent, and dye–biosorbent interaction, respectively. This analysis of the biosorption data confirmed that these biosorption processes are ecofriendly and economical. Thus, this biomass system may be useful for the removal of contaminating cationic dyes.  相似文献   
98.
The proposed on-site zero-water discharge system was comprised of four main components: anaerobic tank, aerobic bioreactor, activated soil filter and water-collecting well. The results demonstrate that at 350 m3 day−1 of hydraulic load, the system can effectively remove pollutants from the wastewater, e.g., 86% removal of COD; 87% removal of SS; 80% removal of TP and 71% removal of TN. The growth states of the grasses, macrophytes and arbors in the activated soil filter were better than the control. The life of the activated soil filter was estimated to be ∼12-15 yrs, based on the laboratory microcosm studies. However, humic acid contents and soil porosity have suggested that the activated soil filter was able to regenerate itself and thereby prolonging its life by reducing clogging of the pores. The results suggest that the zero-water discharge system was a promising bio-measure in treating diffuse village wastewater and benefiting community afforestation.  相似文献   
99.
The present research deals with the quantification of health hazard in a fluorosis prone area from east-coast of India. The average health hazard quotients are 2.09, 2.42, 1.79, and 1.69 for infants, children, male, and female adults, respectively. These values are more than the tolerance limit (1) in 92% groundwater samples and 96% of the study area. The children are more vulnerable to fluorosis than infants and adults. Ca2+/ Na+ versus HCO3/Na+ and Ca2+/Na+ versus Mg2+/Na+ plots suggest silicate weathering as the prime factor while linear relationship of TDS versus NO3 + (Cl/HCO3) supports the anthropogenic input of F to the aquifer system. The study suggests that the F ions are chiefly derived from fluorite, apatite, biotite, and hornblende present in the granitic basement under alkaline environment. The secondary sources are domestic and industrial sewage as well as return flow from irrigation with ingredients of phosphate fertilizers. The adverse effects of fluorosis can be minimized by mass awareness programmes, alternative source of potable drinking water, defluoridation techniques, dilution of high F concentration in groundwater, and minimizing the use of phosphate fertilizers.  相似文献   
100.
Major ion, trace element, and stable isotope analyses were performed on groundwater samples collected during November 2005 and 2006 in Chia-Nan plain of southwestern Taiwan to examine As mobilization in aquifers. The high concentrations of As, Fe and Mn in the groundwater is consistent with low Eh values (under moderately reduced state). Moreover, the observed Na/Cl and SO(4)/Cl molar ratios in groundwater demonstrate the influence of seawater intrusion. Seawater intrusion could provide required electron acceptors (i.e., SO(4)) for bacterial sulfate reduction and promote reducing conditions that are favorable for As mobilization. The concurrent increases in the concentrations of Fe and Mn from 2005 to 2006 may be caused by bacterial Fe(III) and Mn(IV) reduction. Geochemical modeling demonstrate that As(III) is the dominant As species and the presence of Fe-bearing carbonates, sulfides, and oxide phases may locally act as potential sinks for As. Mud volcano fluids were also collected and analyzed to assess the possible source of As in the Chia-Nan plain groundwater. The oxygen and hydrogen isotopic signatures indicate that the As-rich mud volcano fluids may have been modified by chemical exchange with (18)O-rich crustal rocks and possibly originated from mixing of deep brines with circulating meteoric water. Thus As in the Chia-Nan plain groundwater may have been evolved from deep crustal fluids or rock sources. The hydrogeochemistry and widespread As enrichment in groundwater of Chia-Nan plain result from multiple processes, e.g., de-watering of deep crustal fluids, seawater intrusion, and biogeochemical cycling of Fe, As, and S in alluvial sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号