首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   1篇
  国内免费   1篇
废物处理   6篇
环保管理   9篇
综合类   6篇
基础理论   13篇
污染及防治   30篇
评价与监测   20篇
社会与环境   4篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   5篇
  2016年   6篇
  2015年   4篇
  2014年   3篇
  2013年   10篇
  2012年   2篇
  2011年   9篇
  2010年   7篇
  2009年   3篇
  2008年   3篇
  2007年   9篇
  2006年   6篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1979年   1篇
  1958年   1篇
  1956年   1篇
  1955年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
51.
Perchlorate contamination of aquifers and drinking-water supplies has led to stringent regulations in several states to reduce perchlorate concentrations in water at acceptable levels for human consumption. Several perchlorate treatment technologies exist, but there is significant cost associated with their use, and the majority of them are unable to degrade perchlorate to innocuous chloride. We propose the use of a novel sorbent for perchlorate, i.e. an aluminum-based drinking-water treatment residual (Al-WTR), which is a by-product of the drinking-water treatment process. Perchlorate sorption isotherms (23+/-1 degrees C) showed that the greatest amount (65%) of perchlorate removed by the Al-WTR was observed with the lowest initial perchlorate load (10 mg L(-1)) after only 2 h of contact time. Increasing the contact time to 24 h, perchlorate removal increased from 65 to 76%. A significant correlation was observed between the amounts of perchlorate removed with evolved chloride in solution, suggesting degradation of perchlorate to chloride.  相似文献   
52.
Use of Fe/Al hydroxide-containing materials to remediate As-contaminated sites is based on the general notion that As adsorption in soils is primarily controlled by Fe/Al (hydr)oxides. A low-cost and potentially effective substitute for natural Fe/Al hydroxides could be the drinking-water treatment residuals (WTRs). Earlier work in our laboratory has shown that WTRs are effective sorbents for As in water. We hypothesized that land-applied WTRs would work equally well for As-contaminated soils. Results showed that WTRs significantly (p<0.001) increased the soil As sorption capacity. All WTR loads (2.5, 5, and 10%) significantly (p<0.001) increased the overall amount of As sorbed by both soils when compared with that of the unamended controls. The amount of As desorbed with phosphate (7500 mg kg(-1) load) was approximately 50%. The WTR effectiveness in increasing soil As sorption capacities was unaffected by differences in both soils' chemical properties.  相似文献   
53.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   
54.
In order to screen out the best variety of wheat (Triticum aestivum) out of eight varieties (viz., HP 1633, BW 11, NW 1014, Sonalika, HUW 468, K 9107, HP 1731 and HUW 234), a field experiment was conducted (from Dec. 2002 to April 2003) in a randomized block design replicated thrice at Crop Research and Seed Multiplication Farm, Burdwan University, West Bengal, India. Various morpho physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), leaf area ratio (LAR), leaf area duration (LAD), net assimilation rate (NAR), yield attributes viz., length of panicles, number of grains per panicle, grain yield, straw yield, pigment content in flag leaf (chlorophyll a, b and total chlorophyll and carotenoid content) were estimated and analyzed statistically Soil bacterial populations were also estimated in the fallow land before sowing of seeds and after harvesting of crop. The HUW 468 variety records higher grain yield, maximum panicle length and maximum chlorophyll b and total chlorophyll content.  相似文献   
55.
The dynamics, degradation, and conservation of forest ecosystems are matters of prime concerns worldwide at the present. Proper planning and management of a forest area are essentially needed to protect it from the grasp of burgeoning pressure of urban-industrial sprawl. Establishment of eco-sensitive zones (ESZs), which act as buffer areas around the core forests, is one of the key approaches towards achieving this goal. This paper deals with the applicability of geospatial techniques to identify the ESZ around an Indian wildlife sanctuary following the different rules and acts prescribed by the Government of India. Gumti Wildlife Sanctuary, located in the northeastern state of Tripura in India, has been selected here as a case study. Collected pieces of information on the distribution of biodiversity and human population in the area were also used to make the approach more holistic. As inferred from this study, remote sensing and geographical information systems were found to be easily implementable and time as well as cost-effective tools for this purpose with a distinct advantage of spatial as well as temporal accuracy in identifying the existing land use and land cover patterns in pilot assessments. However, the results indicated that only appropriate hybridization of field-based information on the biodiversity and ecological aspects of the forest as well as patterns of human interferences with the remote sensing and GIS-based data could make this approach more relevant in actual implementations.  相似文献   
56.
57.
Leachate emission from uncontrolled municipal solid waste landfills (referred to as waste sites in the present study) is a major threat to the environment and living beings in its vicinity. Surface water contamination potential resulting from leachate may be used as one of the criteria for prioritization of sites for remediation purposes. The existing hazard rating systems that prioritize waste sites considering surface water contamination potential as one of the criteria are mainly suited for the developed countries where these were developed initially. In developing countries like India, the set of conditions differ from those in developed countries, and therefore the existing systems may not be suitable for developing countries. Thus in the present study, an improved system is proposed to assess surface water contamination potential from MSW sites. The system is based on the concept of Source, Pathway and Receptor. The proposed system employs parameters derived from the review of existing rating systems and selects their best and worst values based on literature review, design standards and field conditions. The importance weights of the system parameters have been decided based on expert judgment using Delphi technique. Sensitivity analysis of the system shows that the improved system is more sensitive than the existing systems for the site conditions encountered in developing countries. Monte Carlo analysis of the proposed system confirms the spread of the scores obtained from the system over the full scale of 0–1000. The improved system is compared with existing systems by applying it to waste sites from metropolitan cities of India and performing clustering analysis on the rating scores. The clustering analysis shows that the rating scores from the improved system are less clustered as compared to the scores from the existing systems. This demonstrates that the improved system makes a better tool to distinctly prioritize the waste sites for remediation purpose.  相似文献   
58.
A new Gram-positive, nonpigmented, rod-shaped fluoride-tolerant bacterial strain, NM25, was isolated from waterlogged muddy field soil collected from the fluoride endemic area of Rampurhat II block (average fluoride in water, 4.7 mg/l, and in soil, 1.5 mg/kg) in Birbhum District, West Bengal, India. The study was undertaken to characterize the fluoride-tolerant bacterial isolate, to determine its role in bioaccumulation of fluoride, and to analyze the water and soil quality of the bacterial environment. The isolate was positive for catalase, lipase, urease, protease, oxidase, and H2S production, but negative for indole production, nitrate reduction, and Vogues–Proskauer test. The organisms were sensitive to recommended doses of ofloxacin, kanamycin, rifampicin, levofloxacin, vancomycin, gatifloxacin, gentamicin, doxycycline, streptomycin, and nalidixic acid but resistant to ampicillin. Based on the phenotypic characteristics, 16S rRNA gene sequence, and phylogenetic analysis, the bacterial isolate NM25 was identified as Bacillus flexus. The G+C content of the 16S rDNA was 53.14 mol%. This strain tolerated up to 20 % (w/v) NaCl in nutrient agar medium and was grown at the pH range 4–12. It reduced fluoride concentration up to 67.45 % and tolerated more than 1,500 ppm of fluoride in brain–heart infusion agar medium.  相似文献   
59.
Lead (Pb)-based paints pose a serious health problem to people living in residential settings constructed prior to 1978. Children are at a greater risk to Pb exposure resulting from hand-to-mouth activity in Pb-contaminated residential soils. For soil Pb, the most environmentally friendly, potentially cheap, and visually unobtrusive in situ technology is phytoremediation. However, the limiting factor in a successful phytoremediation strategy is the availability of Pb for plant uptake. The purpose of this study was to establish a relationship between soil properties and the plant-available/exchangeable Pb fraction in the selected Pb-based paint-contaminated residential sites. We selected 20 such sites from two different locations (San Antonio, Texas and Baltimore, Maryland) with varying soil properties and total soil Pb concentrations ranging between 256 and 4,182 mg kg?1. Despite higher Pb levels in these soils that exceeds US EPA permissible limit of 400 mg kg???1, it is known that the plant-available Pb pools are significantly lower because of their sorption to soil components such as organic matter, Fe?CMn oxides, and clays, and their precipitation in the form of carbonates, hydroxides, and phosphates. Principal component analysis and hierarchical clustering showed that the potentially plant-available Pb fraction is controlled by soil pH in the case of acidic Baltimore soils, while soil organic matter plays a major role in alkaline San Antonio soils. Statistical models developed suggest that Pb is likely to be more available for plant uptake in Baltimore soils and a chelant-assisted phytoextraction strategy will be potentially necessary for San Antonio soils in mobilizing Pb from complexed pool to the plant-available pool. A thorough knowledge of site-specific factors is therefore essential in developing a suitable and successful phytoremediation model.  相似文献   
60.
Due to the increasing amount of polyurethane waste, chemical recycling of these materials is a topic of growing interest for many researchers. The primary purpose of polyurethane feedstock recycling is to recover the starting polyol. In this study glycerolysis using glycerine from two sources and two purity grades is proposed as a method of chemical recycling. The main effort of this paper focuses on the employment of commercial glycerine of analytical grade and waste glycerine without purification derived from the biodiesel production, as a decomposing agent for polyurethane recycling. In this study, the influence of polyurethane to glycerine mass ratio (PU/GL) and the type of decomposing agent on the chemical structure by FTIR, 1H NMR and GPC was examined. FTIR analysis of the glycerolysates showed absorption peaks similar to the virgin polyol. Those results are in compliance with GPC chromatograms, which showed for all samples, well-defined peak at ca. 13 min of retention time. The molecular weight of glycerolysates was ranging from 800 to 1300 g mol?1 depending on PU/GL mass ratio. The novel decomposition agent, namely waste glycerine derived from biodiesel production was successfully used in glycerolysis process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号