首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   1篇
  国内免费   1篇
废物处理   6篇
环保管理   34篇
综合类   145篇
基础理论   53篇
污染及防治   77篇
评价与监测   11篇
社会与环境   3篇
灾害及防治   1篇
  2016年   3篇
  2013年   15篇
  2012年   7篇
  2011年   7篇
  2010年   8篇
  2009年   12篇
  2008年   5篇
  2007年   10篇
  2006年   12篇
  2005年   14篇
  2004年   3篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   9篇
  1993年   7篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1987年   3篇
  1985年   4篇
  1984年   4篇
  1981年   4篇
  1980年   4篇
  1974年   3篇
  1969年   3篇
  1966年   3篇
  1965年   4篇
  1964年   3篇
  1962年   4篇
  1961年   7篇
  1960年   8篇
  1959年   6篇
  1958年   5篇
  1957年   5篇
  1956年   8篇
  1955年   6篇
  1954年   6篇
  1953年   7篇
  1951年   4篇
  1947年   3篇
  1941年   3篇
  1934年   2篇
  1933年   2篇
  1931年   3篇
排序方式: 共有330条查询结果,搜索用时 15 毫秒
261.
262.
263.
Singer S 《Disasters》1977,1(2):151-151
  相似文献   
264.
265.
Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches following “nature as model”. Siliceous sponges are unique among silica forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated “biosilica” formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in nanobiotechnology and medicine. Werner E. G. Müller dedicated this study to Prof. Vera Gamulin (Rudjer Boskovic Institute, Zagreb, Croatia) in honour of her unique contributions in molecular evolution.  相似文献   
266.
The riddle of “life,” a biologist’s critical view   总被引:1,自引:0,他引:1  
To approach the question of what life is, we first have to state that life exists exclusively as the "being-alive" of discrete spatio-temporal entities. The simplest "unit" that can legitimately be considered to be alive is an intact prokaryotic cell as a whole. In this review, I discuss critically various aspects of the nature and singularity of living beings from the biologist's point of view. In spite of the enormous richness of forms and performances in the biotic realm, there is a considerable uniformity in the chemical "machinery of life," which powers all organisms. Life represents a dynamic state; it is performance of a system of singular kind: "life-as-action" approach. All "life-as-things" hypotheses are wrong from the beginning. Life is conditioned by certain substances but not defined by them. Living systems are endowed with a power to maintain their inherent functional order (organization) permanently against disruptive influences. The term organization inherently involves the aspect of functionality, the teleonomic, purposeful cooperation of structural and functional elements. Structures in turn require information for their specification, and information presupposes a source. This source is constituted in living systems by the nucleic acids. Organisms are unique in having a capacity to use, maintain, and replicate internal information, which yields the basis for their specific organization in its perpetuation. The existence of a genome is a necessary condition for life and one of the absolute differences between living and non-living matter. Organization includes both what makes life possible and what is determined by it. It is not something "implanted" into the living beings but has its origin and capacity for maintenance within the system itself. It is the essence of life. The property of being alive we can consider as an emergent property of cells that corresponds to a certain level of self-maintained complex order or organization.  相似文献   
267.
268.
The polycyclic musk compounds HHCB (Galaxolide) and AHTN (Tonalide) are commonly used as synthetic fragrances in personal care products and household cleaners. These and other synthetic musk fragrances were quantified in different aquatic samples from the German Environmental Specimen Bank (ESB). While HHCB and AHTN were found in almost all samples, most of the other musk fragrances were detected only in a few samples and mostly at lower concentration levels. Blue mussels from the North Sea showed varying levels of 0.5-1.7 ng g(-1) ww for HHCB and 0.4-2.5 ng g(-1) ww for AHTN (ww, wet weight) in the period from 1986 to 2000, while blue mussels from the Baltic Sea were only slightly contaminated with synthetic musk fragrances. Lipid weight-related concentrations of synthetic musk compounds in blue mussels were higher than in eelpout muscles, bladder wrack and herring gull eggs. In comparison to the marine specimens, muscles of bream from German rivers had higher concentrations of HHCB and AHTN. The ranges of HHCB and AHTN concentrations in bream from the Elbe River were 545-6400 ng g(-1) lw and 48-2130 ng g(-1) lw, respectively (lw, lipid weight; five sampling sites, period 1993-2003). In the Rhine River, HHCB and AHTN levels of bream muscles were highest at the Iffezheim site (up to 9750 ng g(-1) lw HHCB, 1998). Even higher synthetic musk levels were detected in bream from the rivers Saale and Saar. In recent years, levels of both compounds determined in bream from most sampling sites have decreased from maximum values in the 1990s. As the concentrations of AHTN have decreased faster, the ratio of HHCB to AHTN increased from 2-4 in the 1990s to 10-20 in recent years.  相似文献   
269.
270.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号