首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1149篇
  免费   8篇
  国内免费   28篇
安全科学   11篇
废物处理   56篇
环保管理   147篇
综合类   98篇
基础理论   196篇
污染及防治   405篇
评价与监测   209篇
社会与环境   61篇
灾害及防治   2篇
  2023年   33篇
  2022年   75篇
  2021年   60篇
  2020年   12篇
  2019年   26篇
  2018年   38篇
  2017年   34篇
  2016年   53篇
  2015年   27篇
  2014年   49篇
  2013年   146篇
  2012年   55篇
  2011年   63篇
  2010年   50篇
  2009年   47篇
  2008年   64篇
  2007年   43篇
  2006年   43篇
  2005年   34篇
  2004年   31篇
  2003年   29篇
  2002年   20篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   2篇
  1982年   5篇
  1980年   2篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1185条查询结果,搜索用时 515 毫秒
261.
In the present study analytical solutions of a two-dimensional advection–dispersion equation (ADE) with spatially and temporally dependent longitudinal and lateral components of the dispersion coefficient and velocity are obtained using Green’s Function Method (GFM). These solutions describe solute transport in infinite horizontal groundwater flow, assimilating the spatio-temporal dependence of transport properties, dependence of dispersion coefficient on velocity, and the particulate heterogeneity of the aquifer. The solution is obtained in the general form of temporal dependence and the source term, from which solutions for instantaneous and continuous point sources are derived. The spatial dependence of groundwater velocity is considered non-homogeneous linear, whereas the dispersion coefficient is considered proportional to the square of spatial dependence of velocity. An asymptotically increasing temporal function is considered to illustrate the proposed solutions. The solutions are validated with the existing solutions derived from the proposed solutions in three special cases. The effect of spatially/temporally dependent heterogeneity on the solute transport is also demonstrated. To use the GFM, the ADE with spatio-temporally dependent coefficients is reduced to a dispersion equation with constant coefficients in terms of new position variables introduced through properly developed coordinate transformation equations. Also, a new time variable is introduced through a known transformation.  相似文献   
262.
Environmental Science and Pollution Research - Integration of photovoltaic (PV) technologies with building envelopes started in the early 1990 to meet the building energy demand and shave the peak...  相似文献   
263.
Journal of Material Cycles and Waste Management - Recirculation of the leachate using bioreactor technology for in-situ treatment of leachate is an efficient method for reducing the contaminants...  相似文献   
264.
Supervised field trials following good agricultural practices were conducted at the research farms of four agricultural universities located at four different agroclimatic zones of India to evaluate the persistence and dissipation of flubendiamide and its metabolite, des-iodo flubendiamide, on cabbage. Two spray applications of flubendiamide 480 SC of standard and double dose at the rate of 24 and 48 g a.i. ha?1 were given to the crop at a 15-day interval, and the residues of flubendiamide 2 h after spray were found in the range of 0.107–0.33 and 0.20–0.49 mg kg?1 at respective doses. Residue of des-iodo flubendiamide was not detected in any cabbage sample during study period. No residues were found in the soil samples collected from all treated fields after 15 days of application. On the basis of data generated under All India Network Project on Pesticide Residues, a preharvest interval (PHI) of 10 days has been recommended, and the flubendiamide 480 SC has been registered for its use on cabbage by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India. The maximum residue limit (MRL) of flubendiamide on cabbage has been fixed by the Ministry of Health and Family Welfare, Government of India, under Food Safety Standard Authority of India as 0.05 μg/g after its risk assessment.  相似文献   
265.
Composting has been recognized as one of the most cost effective and environmentally sound alternatives for organic wastes recycling from long and composted wastes have a potential to substitute inorganic fertilizers. We investigated the potential of composted tannery sludge for ornamental purposes and to examine the effects of two different composts and concentrations on ornamental Capsicum growth. The two composts were produced with tannery sludge and the composition of each compost was: compost1 of tannery sludge (C1TS) – tannery sludge + sugarcane straw and cattle manure mixed in the ratio 1:3:1 (v:v:v); compost2 of tannery sludge (C2TS) – tannery sludge + “carnauba” straw and cattle manure in the ratio 1:3:1 (v:v:v). Each compost was amended with soil at rates (% v:v) of 0%, 25%, 50%, 75% and 100% (designation hereafter as T1T5, respectively). The number of leaves and fruits were counted, and the stem length was also measured. Chlorophyll content was recorded on three leaves of each harvested plant prior to harvest. Number of leaves and fruits, stem length, dry weight of shoot and roots did not vary significantly between the plants grown in two tannery composts. All the treatments with composted tannery sludge application (T2T5) significantly increased the number of leaves and fruits, stem length and chlorophyll content compared with the control (T1). The chlorophyll content was higher in plants growing in the C1TS compared to C2TS. The results of the present study further suggest that Capsicum may be a good option to be grown on composted tannery amended soil.  相似文献   
266.
Drought is a complex and highly destructive natural phenomenon that affects portions of the United States almost every year, and severe water deficiencies can often become catastrophic for agricultural production. Evapotranspiration (ET) by crops is an important component in the agricultural water budget; thus, it is advantageous to include ET in agricultural drought monitoring. The main objectives of this study were to (1) conduct a literature review of drought indices with a focus to identify a simple but simultaneously adequate drought index for monitoring agricultural drought in a semiarid region and (2) using the identified drought index method, develop and evaluate time series of that drought index for the Texas High Plains. Based on the literature review, the Standardized Precipitation‐Evapotranspiration Index (SPEI) was found to satisfy identified constraints for assessing agricultural drought. However, the SPEI was revised by replacing reference ET with potential crop ET to better represent actual water demand. Data from the Texas High Plains Evapotranspiration network was used to calculate SPEIs for the major irrigated crops. Trends and magnitudes of crop‐specific, time‐series SPEIs followed crop water demand patterns for summer crops. Such an observation suggests that a modified SPEI is an appropriate index to monitor agricultural drought for summer crops, but it was found to not account for soil water stored during the summer fallow period for winter wheat.  相似文献   
267.
The current study evaluates the cytogenetic effects of chromium (III) oxide nanoparticles on the root cells of Allium cepa. The root tip cells of A. cepa were treated with the aqueous dispersions of Cr2O3 nanoparticles (NPs) at five different concentrations (0.01, 0.1, 1, 10, and 100 μg/mL) for 4 hr. The colloidal stability of the nanoparticle suspensions during the exposure period were ascertained by particle size analyses. After 4 hr exposure to Cr2O3 NPs, a significant decrease in mitotic index (MI) from 35.56% (Control) to 35.26% (0.01 μg/mL), 34.64% (0.1 μg/mL), 32.73% (1 μg/mL), 29.6% (10 μg/mL) and 20.92% (100 μg/mL) was noted. The optical, fluorescence and confocal laser scanning microscopic analyses demonstrated specific chromosomal aberrations such as—chromosome stickiness, chromosome breaks, laggard chromosome, clumped chromosome, multipolar phases, nuclear notch, and nuclear bud at different exposure concentrations. The concentration-dependent internalization/bio-uptake of Cr2O3 NPs may have contributed to the enhanced production of anti oxidant enzyme, superoxide dismutase to counteract the oxidative stress, which in turn resulted in observed chromosomal aberrations and cytogenetic effects. These results suggest that A. cepa root tip assay can be successfully applied for evaluating environmental risk of Cr2O3 NPs over a wide range of concentrations.  相似文献   
268.
Soil physical and chemical properties were quantified to assess soil organic carbon (SOC) density (t ha-1) and SOC CO2 mitigation (t ha-1) under six forest strata Cedrus deodara (closed) (S1), Cedrus deodara (open) (S2), Abies pindrow-Picea smithiana (closed) (S3), Abies pindrow-Picea smithiana (open) (S4), Pinus wallichiana (closed) (S5) and Pinus wallichiana (open) (S6) in the southern region of Kashmir Himalayas India. Lowest average bulk density (Db) of 0.95 was found same in S3 (σ?±?0.07) and S5 (σ?±?0.09) and highest Db (1.08) was observed in S2 (σ?±?0.05). A relatively higher coarse fraction was observed in all the six strata ranging from 19.23 (SD?±?4.66) in S3 to 29.37 (σ?±?6.12) in S6. Soil pH ranged from 6.09 (σ?±?0.64) in S4 to 6.97 (σ?±?0.53) in S2. The region under biotic interference has observed significant deforestation and degradation in the past two decades leading to lower SOC% values compared to other studies in the adjoining regions of Indian Himalayas and temperate coniferous forests in general. SOC% values were observed to range from 1.03 (σ?±?0.22) in S2 to 2.25 (σ?±?0.23) in S3. SOC density ranged between 25.11 (σ?±?5.41) t ha-1 in S2 and 51.93 (σ?±?5.24) t ha-1 in S3. SOC CO2 mitigation density was found highest 190.59 (σ?±?19.23) t ha-1 in S3 and lowest 92.16 (σ?±?19.86) t ha-1 in S2. A significant variation was observed in SOC density within strata. SOC density values in closed strata in general exceed to those in open strata. Primary results indicate that the average SOC stock for all the strata is low due to continuous biotic pressure in the last two decades making it a potential region for SOC buildup under plus options of REDD + (Reducing emissions from deforestation and forest degradation) which includes conservation, sustainable management of forests and enhancement of forest carbon (C) stocks.  相似文献   
269.
Climate change is projected to intensify drought and heat stress in groundnut (Arachis hypogaea L.) crop in rainfed regions. This will require developing high yielding groundnut cultivars that are both drought and heat tolerant. The crop growth simulation model for groundnut (CROPGRO-Groundnut model) was used to quantify the potential benefits of incorporating drought and heat tolerance and yield-enhancing traits into the commonly grown cultivar types at two sites each in India (Anantapur and Junagadh) and West Africa (Samanko, Mali and Sadore, Niger). Increasing crop maturity by 10 % increased yields up to 14 % at Anantapur, 19 % at Samanko and sustained the yields at Sadore. However at Junagadh, the current maturity of the cultivar holds well under future climate. Increasing yield potential of the crop by increasing leaf photosynthesis rate, partitioning to pods and seed-filling duration each by 10 % increased pod yield by 9 to 14 % over the baseline yields across the four sites. Under current climates of Anantapur, Junagadh and Sadore, the yield gains were larger by incorporating drought tolerance than heat tolerance. Under climate change the yield gains from incorporating both drought and heat tolerance increased to 13 % at Anantapur, 12 % at Junagadh and 31 % at Sadore. At the Samanko site, the yield gains from drought or heat tolerance were negligible. It is concluded that different combination of traits will be needed to increase and sustain the productivity of groundnut under climate change at the target sites and the CROPGRO-Groundnut model can be used for evaluating such traits.  相似文献   
270.
The severity of Zn deficiency increased with increase in soil exchangeable sodium percentage (ESP) with salt sensitive variety M1-48 scoring 6 at ESP 62 as against only score 3 by salt tolerant variety Pokkali under similar soil conditions. Strikingly, zinc contents were much higher in salt tolerant variety than in salt sensitive one. Zinc application increased zinc concentration in the roots by a factor of 2.85 to 3.87 in Pokkali whereas it rose from 2.37 to 4.35 times in M1-48 depending upon ESP but in the leaves it registered increase of 1.5 to 1.8 times only. In general, the concentrations of reducing sugar were less (about 2.2%) than that of non-reducing (about 3.8%) in both the varieties under normal soil conditions. However, the concentration of reducing sugar doubled (4.2-4.4%) at the highest ESP 62, whereas the concentration of non-reducing sugar though increased (4.1 to 5.1%) but not as vigorously as reducing one. Zinc application reduced the concentration of reducing sugar but not that of non-reducing at similar ESP values. In Pokkali, the concentrations of total sugar increased from 6% at ESP 20 to 9.34% at ESP 62, whereas it registered enhancements of 5.98 to 8.6% in M1-48 under similar conditions. The nitrate reductase (NR) activity decreased with increase in soil sodicity however, the varietal differences in NR activity were wider under Zn-stress than under conditions of applied zinc with Pokkali registering higher NR activities. Carbonic anhydrase activities were higher in salt tolerant variety. Inhibition in carbonic anhydrase activity amounted to 23 and 45% in salt-sensitive variely M1-48 whereas only 19 and 33% in salt-tolerant variety Pokkali at ESP 41 and 62, respectively. The effects of zinc application at higher soil sodicity were more obvious in salt-sensitive variety than in salt-tolerant one. The findings suggest that the tolerance to Zn stress runs parallel to salt tolerance abilities of rice varieties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号