全文获取类型
收费全文 | 9684篇 |
免费 | 1篇 |
专业分类
废物处理 | 777篇 |
环保管理 | 1209篇 |
综合类 | 935篇 |
基础理论 | 3109篇 |
污染及防治 | 1739篇 |
评价与监测 | 1017篇 |
社会与环境 | 899篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 3篇 |
2019年 | 3篇 |
2018年 | 1475篇 |
2017年 | 1371篇 |
2016年 | 1193篇 |
2015年 | 123篇 |
2014年 | 16篇 |
2013年 | 19篇 |
2012年 | 462篇 |
2011年 | 1338篇 |
2010年 | 690篇 |
2009年 | 597篇 |
2008年 | 876篇 |
2007年 | 1230篇 |
2006年 | 4篇 |
2005年 | 18篇 |
2004年 | 37篇 |
2003年 | 66篇 |
2002年 | 100篇 |
2001年 | 14篇 |
2000年 | 11篇 |
1999年 | 2篇 |
1998年 | 9篇 |
1985年 | 1篇 |
1984年 | 11篇 |
1983年 | 8篇 |
1935年 | 2篇 |
排序方式: 共有9685条查询结果,搜索用时 15 毫秒
321.
Changes of microbial composition during wastewater reclamation and distribution systems revealed by high-throughput sequencing analyses 总被引:2,自引:0,他引:2
Yiwen LIN Dan LI Siyu ZENG Miao HE 《Frontiers of Environmental Science & Engineering》2016,10(3):539-547
This study employed 454-pyrosequencing to investigate microbial and pathogenic communities in two wastewater reclamation and distribution systems. A total of 11972 effective 16S rRNA sequences were acquired from these two reclamation systems, and then designated to relevant taxonomic ranks by using RDP classifier. The Chao index and Shannon diversity index showed that the diversities of microbial communities decreased along wastewater reclamation processes. Proteobacteria was the most dominant phylum in reclaimed water after disinfection, which accounted for 83% and 88% in two systems, respectively. Human opportunistic pathogens, including Clostridium, Escherichia, Shigella, Pseudomonas and Mycobacterium, were selected and enriched by disinfection processes. The total chlorine and nutrients (TOC, NH3-N and NO3-N) significantly affected the microbial and pathogenic communities during reclaimed water storage and distribution processes. Our results indicated that the disinfectant-resistant pathogens should be controlled in reclaimed water, since the increases in relative abundances of pathogenic bacteria after disinfection implicate the potential public health associated with reclaimed water. 相似文献
322.
323.
324.
Yan GUO Chuanfu WU Qunhui WANG Min YANG Qiqi HUANG Markus MAGEP Tianlong ZHENG 《Frontiers of Environmental Science & Engineering》2016,10(4):6
The use of PLA/starch blends for nitrogen removal was achieved.
The influence of different operating parameters on responses was verified using RSM.
The conditions for desired responses were successfully optimized simultaneously.
Blends material may have a promising application prospect in the future.
Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/starch blends as carbon source and carrier for functional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y1), denitrification (Y2), and COD release rates (Y3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous nitrification and denitrification. The carbon release rate of the blends was controllable. The sensitivity of Y1, Y2, and Y3 to different operating parameters also differed. The sequence for each response was as follows: for Y1, pH>stirring rate>PLA proportion>temperature; for Y2, pH>PLA proportion>temperature>stirring rate; and for Y3, stirring rate>pH>PLA proportion>temperature. In this study, the following optimum conditions were observed: temperature, 32.0°C; pH 7.7; stirring rate, 200.0 r·min-1; and PLA proportion, 0.4. Under these conditions, Y1, Y2, and Y3 were 134.0 μg-N·g-blend-1·h-1, 160.9 μg-N·g-blend-1·h-1, and 7.6 × 103 μg-O·g-blend-1·h-1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal. 相似文献
325.
Junqin PANG Masami MATSUDA Masashi KURODA Daisuke INOUE Kazunari SEI Kei NISHIDA Michihiko IKE 《Frontiers of Environmental Science & Engineering》2016,10(4):7
To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.
相似文献
326.
327.
Although Beijing has carried out municipal solid waste (MSW) source separation since 1996, it has largely been ineffective. In 2012, a “Green House” program was established as a new attempt for central sorting. In this study, the authors used material flow analysis (MFA) and cost benefit analysis (CBA) methods to investigate Green House’s environment and economic feasibility. Results showed that the program did have significant environmental benefits on waste reduction, which reduced the amount of waste by 34%. If the Green House program is implemented in a residential community with wet waste ratio of 66%, the proportion of waste reduction can reach 37%. However, the Green House is now running with a monthly loss of 1982 CNY. This is mainly because most of its benefits come from waste reduction (i.e., 5878 CNY per month), which does not turn a monetary benefit, but is instead distributed to the whole of society as positive environmental externalities. Lack of government involvement, small program scale, and technical/managerial deficiency are three main barriers of the Green House. We, thus, make three recommendations: involve government authority and financial support, expand the program scale to separate 91.4 tons of waste every month, and use more professional equipment/technologies. If the Green House program can successfully adopt these suggestions, 33.8 tons of waste can be reduced monthly, and it would be able to flip the loss into a profit worth 35034 CNY.
相似文献
328.
Jun Hu Fengkui Duan Kebin He Yongliang Ma Shuping Dong Xiande Liu 《Frontiers of Environmental Science & Engineering》2016,10(5):12
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
相似文献
329.
Shuai Liang Peng Gao Xiaoqi Gao Kang Xiao Xia Huang 《Frontiers of Environmental Science & Engineering》2016,10(6):9
Membrane modification is one of the most feasible and effective solutions to membrane fouling problem which tenaciously hampers the further augmentation of membrane separation technology. Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane production lines, possesses an advantageous viability in practical applications. However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively. The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed the presence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200%w/w) achieved a significantly increased blending efficiency with more NPs scattering on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types.
相似文献
330.
Tingting Fang Ruisong Pan Jing Jiang Fen He Hui Wang 《Frontiers of Environmental Science & Engineering》2016,10(6):16
The aim of this study is to analyze the effect of salinity on polycyclic aromatic hydrocarbons (PAHs) biodegradation, community structure and naphthalene dioxygenase gene (ndo) diversity of a halophilic bacterial consortium with the denaturing gradient gel electrophoresis (DGGE) approach. The consortium was developed from oil-contaminated saline soil after enrichment for six times, using phenanthrene as the substrate. The prominent species in the bacterial consortium at all salinities were identified as halophilic bacteria Halomonas, Alcanivorax, Marinobacter, Idiomarina, Martelella and uncultured bacteria. The predominant microbes gradually changed associating with the saline concentration fluctuations ranging from 0.1% to 25% (w/v). Two ndo alpha subunits were dominant at salinities ranging from 0.1% to 20%, while not been clearly detected at 25% salinity. Consistently, the biodegradation occurred at salinities ranging from 0.1% to 20%, while no at 25% salinity, suggesting the two ndo genes played an important role in the degradation. The phylogenetic analysis revealed that both of the two ndo alpha subunits were related to the classic nah-like gene from Pseudomonas stutzeri AN10 and Pseudomonas aeruginosa PaK1, while one with identity of about 82% and the other one with identity of 90% at amino acid sequence level. We concluded that salinity greatly affected halophilic bacterial community structure and also the functional genes which were more related to biodegradation. 相似文献