首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1156篇
  免费   8篇
  国内免费   28篇
安全科学   11篇
废物处理   56篇
环保管理   151篇
综合类   98篇
基础理论   196篇
环境理论   1篇
污染及防治   406篇
评价与监测   210篇
社会与环境   61篇
灾害及防治   2篇
  2023年   33篇
  2022年   75篇
  2021年   60篇
  2020年   15篇
  2019年   27篇
  2018年   38篇
  2017年   34篇
  2016年   53篇
  2015年   27篇
  2014年   49篇
  2013年   146篇
  2012年   55篇
  2011年   63篇
  2010年   51篇
  2009年   47篇
  2008年   64篇
  2007年   43篇
  2006年   45篇
  2005年   34篇
  2004年   31篇
  2003年   29篇
  2002年   20篇
  2001年   17篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   8篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   2篇
  1982年   5篇
  1980年   2篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1192条查询结果,搜索用时 0 毫秒
31.

As a global pollutant, Hg (Hg) since the turn of the last century has received increased attention. Decreasing the emission of Hg into the food chain and the atmosphere is an effective way to reduce the Hg damage. The current study provided information about pilot-scale horizontal subsurface flow (HSSF) constructed wetlands (CWs) to remove different Hg species in polluted water. Synthetic wastewater was fed to two HSSF CWs, one was planted with Acorus calamus L and the other was unplanted as a control. The total Hg (THg), dissolved Hg (DHg), and particulate Hg (PHg) from five sites along the HSSF CWs were analyzed to describe the process of Hg removal. Results show that the CWs have high removal efficiency of Hg which is more than 90%. The removal efficiencies of THg and DHg from the unplanted CW were 92.1?±?3.6% and 72.4?±?13.1%, respectively. While, the removal efficiencies of THg and DHg in planted CW were 95.9?±?7.5% and 94.9?±?4.9%, which were higher than that in blank CW. The PHg was mainly removed in the first quarter of the CWs, which was also revealed by the partition coefficient Kd. To a certain extent, the effect of plants depends on the hydraulic retention time (HRT). The results in the current study show the potential of the HSSF-CWs for restoration from Hg-contaminated water.

  相似文献   
32.
The present experiment was aimed at assessing the impact of simulated acidic precipitation (SAR) on growth, biomass accumulation and yield of two cultivars of wheat (Triticum aestivum L.), Malviya 206 and 234, varying in cuticular thickness and leaf area. Wheat cultivars were exposed to simulated rain acidified to pH 5.6 (control), 5.0, 4.5, 4.0 and 3.0 from 30 days of age, twice a week for five weeks. The plants received ambient precipitation of unknown acidity, as well as the acid rain treatments. Growth parameters such as shoot height, root length, and leaf area were reduced significantly in treated plants at different growth stages. Above and below-ground biomass also decreased significantly in the plants treated with acidic precipitation. Relative to control, the number of grains per plant and yield per m(2) declined significantly at all SAR treatments. The hypothesis that the variety with thinner cuticle and greater leaf area would be more susceptible to acidic precipitation was not supported by the present study.  相似文献   
33.
Boron (B) availability to crop plants depends on soil properties as well as management practices like liming, fertilization and use of organic manures. To assess the effect of farmyard manure (FYM) application on availability of added B, adsorption-desorption of B was investigated in five different soils receiving varying doses of FYM (0, 5 and 10 g FYM kg(-1) soil). Two surfaces Freundlich model was found best to account for B adsorption-desorption data of all soils. Application of FYM increased B adsorption capacities pertaining to low (K1) and high (K2) concentration ranges in all soils, except Soil C (Alfisol) having a pH of 9.8, in which the higher rate of FYM decreased the value of K2. Application of FYM did not change B desorption capacities of soils corresponding to low B concentration range (K(1)(1)) significantly, however, it increased B desorption capacity pertaining to high B concentration (K(1)(2)) in all soils, except Soils C (Alfisol) and E (Entisol) having pH of 9.8 and 5.1, respectively. Application of FYM increased the desorption slope factor applicable to low concentration range (1/n(1)(1)) in Soil A (Inceptisol), but decreased it in Soil E (Entisol). The 1/n(1)(2) (desorption slope factor applicable to high concentration range) decreased with FYM application in all soils except Soil E (Entisol), where it was increased. Boron desorption index (slope(ads)/slope(des)) decreased with FYM application in low B concentration range, but increased in high concentration range for all soils except soil E (Entisol, pH 5.1), in which a reverse trend was observed. Application of FYM increased the retention of added B in soils and may help reducing the leaching losses.  相似文献   
34.
Impacts of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate), imidacloprid [1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine] and lindane (1,2,3,4,5.6-hexachlorocyclohexane) treatments on ammonium, nitrate, and nitrite nitrogen and nitrate reductase enzyme activities were determined in groundnut (Arachis hypogaea L.) field for three consecutive years (1997 to 1999). Diazinon was applied for both seed- and soil-treatments but imidacloprid and lindane were used for seed treatments only at recommended rates. Diazinon residues persisted for 60 days in both the cases. Average half-lives (t1/2) of diazinon were found 29.3 and 34.8 days respectively in seed and soil treatments. In diazinon seed treatment, NH4(+), NO3(-), and NO2(-) nitrogen and nitrate reductase activity were not affected. Whereas, diazinon soil treatment indicated significant increase in NH4(+)-N in a 1-day sample, which continued until 90 days. Some declines in NO3(-)N were found from 15 to 60 days. Along with this decline, significant increases in NO2(-)N and nitrate reductase activity were found between 1 and 30 days. Imidacloprid and lindane persisted for 90 and 120 days with average half-lives (t1/2) of 40.9 and 53.3 days, respectively. Within 90 days, imidacloprid residues lost by 73.17% to 82.49% while such losses for lindane residues were found 78.19% to 79.86 % within 120 days. In imidacloprid seed-treated field, stimulation of NO3(-)N and the decline in NH4+NO2(-)-N and nitrate reductase enzyme activity were observed between 15 to 90 days. However, lindane seed treatment indicated significant increases in NH4(+)-N, NO2(-)-N and nitrate reductase activity and some adverse effects on NO3(-)N between 15 and 90 days.  相似文献   
35.
Particulate matter mass (PM), trace gaseous pollutants, and select volatile organic compounds (VOCs) with meteorological variables were measured in Logan, Utah (Cache Valley), for >4 weeks during winter 2017 as part of the Utah Winter Fine Particle Study (UWFPS). Higher PM levels for short time periods and lower ozone (O3) levels were present due to meteorological and mountain valley conditions. Nitrogenous pollutants were relatively strongly correlated with PM variables. Diurnal cycles of NOx, O3, and fine PM(PM 2.5) (aerodynamic diameter <2.5 μm [PM2.5]) suggested formation from NOx. O3 levels increased from early morning into midafternoon, and NOx and PM2.5 increased throughout the morning, followed by sharp decreases. Toluene/benzene and xylenes/benzene ratios and VOC correlations with nitrogenous and PM species were indicative of local traffic sources. Wind sector comparisons suggested that pollutant levels were lower when winds were from nearby mountains to the east versus winds from northerly or southerly origins.

Implications: The Cache Valley in Idaho and Utah has been designated a PM2.5 nonattainment area that has been attributed to air pollution buildup during winter stagnation events. To inform state implementation plans for PM2.5 in Cache Valley and other PM2.5 nonattainment areas in Utah, a state and multiagency federal research effort known as the UWFPS was conducted in winter 2017. As part of the UWFPS, the U.S. Environmental Protection Agency (EPA) measured ground-based PM species and their precursors, VOCs, and meteorology in Logan, Utah. Results reported here from the EPA study in Logan provide additional understanding of wintertime air pollution conditions and possible sources of PM and gaseous pollutants as well as being useful for future PM control strategies in this area.  相似文献   

36.
The U.S. Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source through the air pathway to human exposure in significant exposure microenvironments. Current particulate matter (PM) emission models, particle emission factor model (used in the United States, except California) and motor vehicle emission factor model (used in California only), are suitable only for county-scale modeling and emission inventories. There is a need to develop a site-specific real-time emission factor model for PM emissions to support human exposure studies near roadways. A microscale emission factor model for predicting site-specific real-time motor vehicle PM (MicroFacPM) emissions for total suspended PM, PM less than 10 microm aerodynamic diameter, and PM less than 2.5 microm aerodynamic diameter has been developed. The algorithm used to calculate emission factors in MicroFacPM is disaggregated, and emission factors are calculated from a real-time fleet, rather than from a fleet-wide average estimated by a vehicle-miles-traveled weighting of the emission factors for different vehicle classes. MicroFacPM requires input information necessary to characterize the site-specific real-time fleet being modeled. Other variables required include average vehicle speed, time and day of the year, ambient temperature, and relative humidity.  相似文献   
37.
Laser-induced breakdown spectroscopy (LIBS) has been evaluated as a multimetal continuous emissions monitor (CEM) at the U.S. Environmental Protection Agency (EPA) rotary kiln incinerator simulator (RKIS) facility in Raleigh, NC. Two detection systems with a bifurcated optical fiber bundle were used for simultaneously monitoring the concentrations of Be, Cd, Cr, and Hg in the test. Two calibration techniques were evaluated in the laboratory for the field measurements. On-line calibration of relative metal concentration was also performed in the simulated incinerator gas stream. Toxic metal concentrations measured with LIBS have been compared with the EPA reference method (RM) results.  相似文献   
38.
Agrawal SB  Singh A  Rathore D 《Chemosphere》2005,61(2):218-228
A field study was conducted to evaluate the suitability of ethylene diurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea; EDU) in assessing the impact of O3 on mung bean plants (Vigna radiata L. var. Malviya Jyoti) grown in suburban area of Allahabad city situated in a dry tropical region of India. EDU is a synthetic chemical having anti-ozonant property. Mean monthly O3 concentration varied between 64 and 69 microg m(-3) during the experimental period. In comparison to EDU-treated plants, non-EDU-treated plants showed significant reductions in plant growth and yield under ambient conditions. Significant favourable effects of EDU-application were observed with respect to photosynthetic pigments, soluble protein, ascorbic acid and phenol contents. EDU-treated plants maintained higher levels of pigments, protein and ascorbic acid in foliage as compared to non-EDU-treated ones. The study clearly demonstrated that EDU alleviates the unfavourable effects of O3 on mung bean plants, and therefore can be used as a tool to assess the growth and yield losses in areas having higher O3 concentrations.  相似文献   
39.
It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l?1) and Cr6+ (4,300 mg l?1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l?1 and Cr6+ 500 mg l?1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.  相似文献   
40.
Health care waste includes all the waste generated by health care establishments, research facilities, and laboratories. This constitutes a variety of chemical substances, such as pharmaceuticals, radionuclides, solvents, and disinfectants. Recently, scientists and environmentalists have discovered that wastewater produced by hospitals possesses toxic properties due to various toxic chemicals and pharmaceuticals capable of causing environmental impacts and even lethal effects to organisms in aquatic ecosystems. Many of these compounds resist normal wastewater treatment and end up in surface waters. Besides aquatic organisms, humans can be exposed through drinking water produced from contaminated surface water. Indeed, some of the substances found in wastewaters are genotoxic and are suspected to be potential contributors to certain cancers. The aim of this study was to evaluate the genotoxic and cytotoxic potential of wastewaters from two hospitals and three clinical diagnostic centers located in Jaipur (Rajasthan State), India using the prokaryotic Salmonella mutagenicity assay (Ames assay) and the eukaryotic Saccharomyces cerevisiae respiration inhibition assay. In the Ames assay, untreated wastewaters from both of the health care sectors resulted in significantly increased numbers of revertant colonies up to 1,000–4,050 as measured by the Salmonella typhimurium TA98 and TA100 strains (with and without metabolic activation) after exposure to undiluted samples, which indicated the highly genotoxic nature of these wastewaters. Furthermore, both hospital and diagnostic samples were found to be highly cytotoxic. Effective concentrations at which 20 % (EC20) and 50 % (EC50) inhibition of the respiration rate of the cells occurred ranged between ~0.00 and 0.52 % and between 0.005 and 41.30 % (calculated with the help of the MS excel software XLSTAT 2012.1.01; Addinsoft), respectively, as determined by the S. cerevisiae assay. The results indicated that hospital wastewaters contain genotoxic and cytotoxic components. In addition, diagnostic centers also represent small but significant sources of genotoxic and cytotoxic wastes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号