首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17630篇
  免费   149篇
  国内免费   117篇
安全科学   427篇
废物处理   662篇
环保管理   1990篇
综合类   5374篇
基础理论   3672篇
环境理论   2篇
污染及防治   4172篇
评价与监测   894篇
社会与环境   630篇
灾害及防治   73篇
  2018年   212篇
  2017年   194篇
  2016年   292篇
  2015年   227篇
  2014年   331篇
  2013年   1187篇
  2012年   379篇
  2011年   532篇
  2010年   507篇
  2009年   565篇
  2008年   586篇
  2007年   610篇
  2006年   541篇
  2005年   475篇
  2004年   510篇
  2003年   469篇
  2002年   447篇
  2001年   638篇
  2000年   422篇
  1999年   293篇
  1998年   205篇
  1997年   200篇
  1996年   203篇
  1995年   237篇
  1994年   246篇
  1993年   212篇
  1992年   226篇
  1991年   236篇
  1990年   258篇
  1989年   231篇
  1988年   183篇
  1987年   185篇
  1986年   186篇
  1985年   184篇
  1984年   203篇
  1983年   191篇
  1982年   199篇
  1981年   211篇
  1980年   170篇
  1979年   187篇
  1978年   149篇
  1977年   144篇
  1974年   149篇
  1973年   147篇
  1968年   156篇
  1967年   186篇
  1966年   154篇
  1965年   149篇
  1964年   151篇
  1963年   139篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
171.
 Ants have a well developed olfactory sense, which they need both for the perception of environmental chemicals, and for a highly sophisticated intraspecific communication system based on pheromones. The question arises therefore as to how different odors are coded in the antennal lobe, the first central neuropil to process olfactory information. We measured odor-evoked activity patterns using in vivo neuropil calcium recording in the antennal lobe of the ant Camponotus rufipes. We found that (a) odors elicit focal activity spots (diameter ca. 20 μm) which most probably represent the olfactory glomeruli; (b) different odors are coded in odor specific patterns of such activated spots, and a particular spot can participate in the pattern for different odors; (c) calcium increased in the activated spots within the 2-s stimulation period and slowly declined thereafter. Received: 10 March 1999 / Accepted in revised form: 5 July 1999  相似文献   
172.
173.
174.
175.
176.
177.
178.
179.
Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.  相似文献   
180.
 The Australian buprestid beetle Merimna atrata (Coleoptera: Buprestidae) approaches forest fires because its larvae develop in freshly burnt wood. So far nothing is known about possible sensory systems enabling the beetles to detect fires and to cope with the thermal environment close to the flames. We found that M. atrata has two pairs of infrared (IR) organs on the ventrolateral sides of the abdomen. Each IR organ consists of a specialized IR-absorbing area which is innervated by one thermosensitive multipolar neuron. The primary dendritic branches ramify into more than 800 closely packed terminal endings which contain a large number of mitochondria. We called the special morphology of the dendritic region a terminal dendritic mass. The type of IR receptor found in M. atrata is unique in insects and can best be compared with the IR organs of boid snakes. Received: 14 August 2000 / Accepted in revised form: 18 October 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号