全文获取类型
收费全文 | 32970篇 |
免费 | 346篇 |
国内免费 | 272篇 |
专业分类
安全科学 | 919篇 |
废物处理 | 1205篇 |
环保管理 | 4482篇 |
综合类 | 5495篇 |
基础理论 | 9293篇 |
环境理论 | 25篇 |
污染及防治 | 8424篇 |
评价与监测 | 1978篇 |
社会与环境 | 1562篇 |
灾害及防治 | 205篇 |
出版年
2022年 | 216篇 |
2021年 | 241篇 |
2020年 | 190篇 |
2019年 | 248篇 |
2018年 | 459篇 |
2017年 | 437篇 |
2016年 | 643篇 |
2015年 | 541篇 |
2014年 | 774篇 |
2013年 | 2406篇 |
2012年 | 951篇 |
2011年 | 1412篇 |
2010年 | 1124篇 |
2009年 | 1180篇 |
2008年 | 1389篇 |
2007年 | 1497篇 |
2006年 | 1303篇 |
2005年 | 1103篇 |
2004年 | 1094篇 |
2003年 | 1044篇 |
2002年 | 1019篇 |
2001年 | 1328篇 |
2000年 | 932篇 |
1999年 | 597篇 |
1998年 | 455篇 |
1997年 | 470篇 |
1996年 | 472篇 |
1995年 | 528篇 |
1994年 | 463篇 |
1993年 | 429篇 |
1992年 | 444篇 |
1991年 | 405篇 |
1990年 | 416篇 |
1989年 | 446篇 |
1988年 | 368篇 |
1987年 | 324篇 |
1986年 | 297篇 |
1985年 | 335篇 |
1984年 | 310篇 |
1983年 | 352篇 |
1982年 | 343篇 |
1981年 | 304篇 |
1980年 | 273篇 |
1979年 | 295篇 |
1978年 | 248篇 |
1977年 | 212篇 |
1976年 | 223篇 |
1975年 | 209篇 |
1973年 | 188篇 |
1972年 | 214篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Brent J. Dalzell Prasanna H. Gowda David J. Mulla 《Journal of the American Water Resources Association》2004,40(2):533-543
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions. 相似文献
132.
Marji J. Patz Katta J. Ready Quentin D. Skinner 《Journal of the American Water Resources Association》2004,40(5):1247-1255
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation. 相似文献
133.
L. J. Sheppard A. Crossley I. D. Leith K. J. Hargreaves J. A. Carfrae N. van Dijk J. N. Cape D. Sleep D. Fowler J. A. Raven 《Water, Air, & Soil Pollution: Focus》2005,4(6):197-205
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa. 相似文献
134.
Heckrath G Djurhuus J Quine TA Van Oost K Govers G Zhang Y 《Journal of environmental quality》2005,34(1):312-324
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships. 相似文献
135.
Sustainable land application: an overview 总被引:1,自引:0,他引:1
O'Connor GA Elliott HA Basta NT Bastian RK Pierzynski GM Sims RC Smith JE 《Journal of environmental quality》2005,34(1):7-17
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals. 相似文献
136.
Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading. 相似文献
137.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution. 相似文献
138.
David Brandes Gregory J. Cavallo Michael L. Nilson 《Journal of the American Water Resources Association》2005,41(6):1377-1391
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale. 相似文献
139.
H. J. Cranfield 《Marine Biology》1973,22(3):211-223
The use during settlement of secretions of the 9 different types of gland in the foot of the pediveliger of Ostrea edulis L. was examined experimentally. During settlement, there is a progressive decrease in the crawling speed of the larva and a strengthening of its bond with the substratum. Both changes are related to (a) a change from ciliary to muscular pedal locomotion; (b) the increasing acidity and viscosity of the mucoid secretions used; (c) the secretion of a byssus thread by the glands of the byssus duet; (d) changes in the form and composition of this byssus. At the termination of settlement, the entire contents of 2 types of gland are discharged. Their secretions give rise to the cement which permanently fixes the larva to the substratum. The 9 types of gland are utilised sequentially in a manner closely related to the 6 phases recognised in settlement behaviour. 相似文献
140.
Ryden JC Whitehead DC Lockyer DR Thompson RB Skinner JH Garwood EA 《Environmental pollution (Barking, Essex : 1987)》1987,48(3):173-184
Emissions of ammonia were measured from livestock excreta and fertilisers applied to grass swards, from grazed paddocks, from decomposing grass herbage and from an animal house containing dairy cows. Emissions from urine, dung, slurry and fertilisers were determined using a system of wind tunnels with each tunnel covering an area of 1 m(2). Emissions from grazed swards were determined using a micrometeorological mass balance method. From the results of these measurements, together with other published information, an inventory for ammonia emissions has been calculated for grassland and livestock production systems over the UK as a whole. It is estimated that emissions from grassland and cattle and sheep production amount to about 230 kt NH(3)-N annually, while emissions from pig and poultry production amount to about 40 kt and 80 kt NH(3)-N, respectively. 相似文献