首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   3篇
  国内免费   1篇
安全科学   4篇
废物处理   2篇
环保管理   9篇
综合类   18篇
基础理论   21篇
污染及防治   15篇
评价与监测   7篇
社会与环境   4篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   2篇
  2011年   8篇
  2010年   4篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
31.
32.
The Rapid Infiltration and Extraction (RIX) facility, a soil aquifer treatment system, began taking secondary effluent from the City of San Bernardino, California, in 1996. The gradual decrease in the hydraulic conductivity of the infiltration basins at RIX has been attributed to the accumulation of organic matter in the surface sand. Periodic tillage of the surface sand to restore the permeability has mixed this organic matter to a depth of nearly 50 cm. We hypothesized that in situ chemical oxidation of the surface sand might improve the infiltration rate and increase the time between filling and drying cycles. The effect of organic matter oxidation on sand permeability was tested in laboratory sand columns treated with sodium hypochlorite, calcium hypochorite, and ozone gas. All oxidants significantly decreased the hydraulic conductivity of the surface sand. The loss in permeability was attributed to an increase in dispersed clay plus silt-sized particles that were released as a result of oxidation. This study suggests that ex situ sand-washing operations, currently being used to clean the sand, could be improved by the addition of oxidants to the wash water.  相似文献   
33.
Understanding the relationship between human disturbance and ecological response is essential to the process of indicator development. For large-scale observational studies, sites should be selected across gradients of anthropogenic stress, but such gradients are often unknown for a population of sites prior to site selection. Stress data available from public sources can be used in a geographic information system (GIS) to partially characterize environmental conditions for large geographic areas without visiting the sites. We divided the U.S. Great Lakes coastal region into 762 units consisting of a shoreline reach and drainage-shed and then summarized over 200 environmental variables in seven categories for the units using a GIS. Redundancy within the categories of environmental variables was reduced using principal components analysis. Environmental strata were generated from cluster analysis using principal component scores as input. To protect against site selection bias, sites were selected in random order from clusters. The site selection process allowed us to exclude sites that were inaccessible and was shown to successfully distribute sites across the range of environmental variation in our GIS data. This design has broad applicability when the goal is to develop ecological indicators using observational data from large-scale surveys.  相似文献   
34.
35.
Conserving coral reefs is critical for maintaining marine biodiversity, protecting coastlines, and supporting livelihoods in many coastal communities. Climate change threatens coral reefs globally, but researchers have identified a portfolio of coral reefs (bioclimatic units [BCUs]) that are relatively less exposed to climate impacts and strongly connected to other coral reef systems. These reefs provide a proactive opportunity to secure a long-term future for coral reefs under climate change. To help guide local management efforts, we quantified marine cumulative human impact (CHI) from climate, marine, and land pressures (2013 and from 2008 to 2013) in BCUs and across countries tasked with BCU management. Additionally, we created a management index based on common management measures and policies for each pressure source (climate, marine, and land) to identify a country's intent and commitment to effectively manage these pressures. Twenty-two countries (79%) had increases in CHI from 2008 to 2013. Climate change pressures had the highest proportional contribution to CHI across all reefs and in all but one country (Singapore), but 18 BCUs (35%) and nine countries containing BCUs (32%) had relatively high land and marine impacts. There was a significant positive relationship between climate impact and the climate management index across countries (R2 = 0.43, p = 0.02), potentially signifying that countries with greater climate impacts are more committed to managing them. However, this trend was driven by climate management intent in Fiji and Bangladesh. Our results can be used to guide future fine-scale analyses, national policies, and local management decisions, and our management indices reveal areas where management components can be improved. Cost-effectively managing local pressures (e.g., fishing and nutrients) in BCUs is essential for building a climate-ready future that benefits coral reefs and people.  相似文献   
36.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   
37.
Anthropogenic climate change is likely to significantly increase human exposure to droughts and floods. It will also alter seasonal patterns of water availability and affect water quality and the health of aquatic ecosystems with various implications for social and economic wellbeing. Policy development for water resource adaptation needs to allow for a holistic and transparent analysis of the probable consequences of policy options for the wide variety of water uses and users, and the existing ecosystem services associated with any stream basin. This paper puts forward an innovative methodological framework for planning development-compatible climate policies drawing on multi-criteria decision analysis and an implicit risk-management approach to the economics of climate change. Its objectives are to describe how the generic methodology could be tailored for analysis of long-range water planning and policy options in developing countries, and to describe the place of climate change considerations in water governance and planning processes. An experimental thought-exercise applying the methodology to water policy development in Yemen provides further insights on the complexity of water adaptation planning. It also highlights the value of conducting sensitivity analysis to explore the implications of multiple climate scenarios, and the importance of accounting for policy portfolios rather than individual policy options. Rather than constituting a tool that can generate clear measures of optimal solutions in the context of adaptation to uncertain climate futures, we find that this approach is best suited to supporting comprehensive and inclusive planning processes, where the focus is on finding socially acceptable paths forward.  相似文献   
38.
The occurrence of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) provides an exceptionally fertile system in which to investigate issues related to the evolution of parental care. Here, we take advantage of this unique reproductive system to study the influence of maternal body size on embryo survivorship in the brood pouches of pregnant males of the broad-nosed pipefish, Syngnathus typhle. Males were mated with either two large females, two small females, a large then a small female, or a small then a large female. Our results show that offspring survivorship depends on an interaction between female body size and the number of eggs transferred by the female. Eggs of larger females deposited in large numbers are more likely to result in viable offspring than eggs of smaller females laid in large numbers. However, when females deposited smaller numbers of eggs, the eggs from smaller females were more likely to produce viable offspring compared to those from larger females. We found no evidence that this result was based on mating order, the relative sizes of competing females, or egg characteristics such as dry weight of eggs. Additionally, male body size did not significantly influence the survivorship of offspring during brooding. Our results suggest that the factors underlying offspring survivorship in pipefish may be more complex than previously believed, with multiple factors interacting to determine the fitness of individual offspring within the broods of pregnant males.  相似文献   
39.
In this study, diameter growth models for three species growing in mixed-stands of Coastal British Columbia (BC), Canada, under a variety of silvicultural treatments were developed. The three species were: Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western redcedar (Thuja plicata Donn). A Box and Lucas model (1959) was initially fitted to the diameter growth series for each tree, as this model is very flexible and was based on processes reflective of the metabolic processes governing tree growth. Next, a random coefficients modelling approach (i.e., parameter prediction approach) was used to modify the estimated parameters for each species using functions of tree size and stage of development, site productivity, and inter-tree competition variables, while accounting for temporal correlation within trees. Impacts of fertilization on diameter growth were estimated by including the time since fertilization as an additional variable. Since state variables that are changed as a result of thinning were already in the model, accurate results post-thinning were obtained with no changes to the model. For the combined effects of thinning and fertilization, a two-step additive approach was used, where the state variables were changed following thinning and the diameter increment was modified for fertilization using the time since fertilization variable. Results indicated that multiple treatments sustain a change in growth for a longer time period following treatment than thinning or fertilization alone.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号