首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   0篇
  国内免费   6篇
安全科学   14篇
废物处理   27篇
环保管理   26篇
综合类   34篇
基础理论   64篇
环境理论   1篇
污染及防治   114篇
评价与监测   40篇
社会与环境   16篇
  2023年   18篇
  2022年   33篇
  2021年   23篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   5篇
  2014年   20篇
  2013年   41篇
  2012年   12篇
  2011年   18篇
  2010年   9篇
  2009年   14篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   13篇
  2004年   9篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1979年   3篇
  1975年   1篇
  1965年   2篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1955年   2篇
  1929年   1篇
排序方式: 共有336条查询结果,搜索用时 31 毫秒
261.
Pigment contents, proteins and net photosynthesis were investigated in fully developed leaf of 1-year-old seedlings of six mangroves (Bruguiera gymnorrhiza, Rhizophora apiculata) and mangrove associates (Caesalpinia bonduc, Cerbera manghas, Derris heterophylla, Thespesia populnea), collected from Bhitarkanika, located on the east coast of India. Large variations in the photosynthetic rates (PN) among the six species were observed, ranging from 10.16 µmol CO2 m-2 s-1 in C. bonduc to 15.28 µmol CO2 m-2 s-1 in R. apiculata. The total leaf protein content ranged from 12.09 mg g-1 dry wt in T. populnea to 51.89 mg g-1 dry wt in B. gymnorrhiza. The chlorophyll a/b ratio was typically about 3.0 in all the studied species, except C. bonduc (2.8). Photosynthetic rates and chl a/b ratio in the leaves were found to be correlated. Analysis of chlorophyll and xanthophyll spectra suggested: (1) variations in different forms and amounts of carotenes as well as xanthophylls and (2) the presence of high amounts of near-UV-absorbing substances in leaves, particularly in the two mangroves (B. gymnorrhiza, R. apiculata) and a mangrove associate (T. populnea), which appears to be an adaptive feature. Estimation of the chl a/b ratios in isolated thylakoids yielded a low value of 1.8 for R. apiculata and >2.6 for other species. The total protein/chlorophyll ratios in thylakoids varied considerably from 3.14 (D. heterophylla) to 10.88 (T. populnea) among the mangrove associates and from 16.09 to 18.88 between the members of the Rhizophoraceae. The chlorophyll/carotenoid ratios in thylakoids of the six species were more or less similar. The absorption spectra for washed thylakoids of C. manghas and D. heterophylla exhibited absorption characteristics typical for C3-plant thylakoids. However, thylakoids isolated from R. apiculata, B. gymnorrhiza, C. bonduc and T. populnea exhibited an unusual increase in absorption in the blue region (380-410 nm) of the absorption spectrum. The presence of high-absorbing (in the short-wavelength, near-UV region) pigments appears to be closely associated with the thylakoids in R. apiculata and T. populnea. Our results, therefore, suggest a wide range of variation, not only in protein and pigment contents of photosynthetic tissues, but also in the spectral characteristics and composition of the pigments in mangrove species. An understanding of the nature of these pigments in mangroves and their associates, under their natural conditions and especially in relation to eco-physiological adaptations, is necessary, not only in relation to conservation, but also to allow propagation under different salinity conditions.  相似文献   
262.
Environmental Monitoring and Assessment - Evaporation is an important meteorological variable that has a great impact on water resources. In the current research, climatology data, and seasonal...  相似文献   
263.
ABSTRACT

Microplastics are emerging environmental pollutants that have gained tremendous scientific interest in recent years. These micropollutants are omnipresent both in the terrestrial and aquatic environments posing a deleterious threat to the ecosystem and biodiversity. So, it is important to develop a deep understanding of the environmental fate and potential adverse impacts of microplastics on the aquatic and terrestrial environments. By critically reviewing the previously published scientific literature, the present synthesis briefly outlines the characteristics, occurrence and potential toxic effects of microplastics on terrestrial and aquatic biota. The article also focuses on some innovative approaches for sustainable remediation of macroplastics as well as microplastics. Since the concept of microplastics pollution has yet in its infancy in Bangladesh, this synthesis provides an overview of the current scenario of microplastics pollution and some future research recommendations in the context of Bangladesh which might be helpful to the novice researchers of this field.  相似文献   
264.
As with other construction materials, coal fly ash contains trace metals that can leach into the natural environment. As part of a broader effort to encourage appropriate coal combustion product use in infrastructure applications (e.g., road construction, stabilization, and structural fill), this study evaluated traditional and low‐cost adsorbent alternatives for their capacity to attenuate trace metals. Batch sorption tests were used as a preliminary screen for a wide variety of low cost (e.g., steel byproducts, rubber dust, and compost) and innovative materials (e.g., kudzu, biofilm, and pond weed) as well as conventional materials (activated carbon, alumina, and zeolites). The removal rates were demonstrated in this study by observing the calculated distribution coefficient (Kd) which were determined using a program called MATLAB. Limestone and steel byproducts were found to be particularly effective with large Kd values of 15,740, 1,520, and 540 L kg?1 for cadmium, chromium, and selenium and, for ladle refractory and mill scale, Kd values of 3,910, 670, and 1,760 L kg?1 were observed. Among the three metals tested for this study, it was observed that most low cost and innovative materials removed cadmium quite efficiently; however, the removal of selenium and chromium depended on the substrate and prevailing pH. In general, these results suggest that alternative materials may have relevance in niche applications where leaching is a concern that can be addressed through enhanced attenuation capacity via blending or layering of adsorbents.  相似文献   
265.
266.
267.
268.
Increasing public concerns over odors and air regulations in nonattainment zones necessitate the remediation of a wide range of volatile organic compounds (VOCs) generated in the poultry-rendering industry. Currently, wet scrubbers using oxidizing chemicals such as chlorine dioxide (ClO2) are utilized to treat VOCs. However, little information is available on the kinetics of ClO2 reaction with rendering air pollutants, limiting wet scrubber design and optimization. Kinetic analysis indicated that ClO2 does not react with hexanal and 2-methylbutanal regardless of pH and temperature and implied that aldehyde removal occurs primarily via mass transfer. Contrary to the aldehydes, ethanethiol or ethyl mercaptan (a model compound for methanethiol or methyl mercaptan) and dimethyl disulfide (DMDS) rapidly reacted with ClO2. The overall reaction was found to be second and third order for ethanethiol and DMDS, respectively. Moreover, an increase in pH from 3.6 to 5.1 exponentially increased the reaction rate of ethanethiol (e.g., k2 = 25-4200 L/mol/sec from pH 3.6 to 5.1) and significantly increased the reaction rate of DMDS if increased to pH 9 (k3 = 1.4 x 10(6) L2/mol2/sec). Thus, a small increase in pH could significantly improve wet scrubber operations for removal of odor-causing compounds. However, an increase in pH did not improve aldehyde removal. The results explain why aldehyde removal efficiencies are much lower than methanethiol and DMDS in wet scrubbers using ClO2.  相似文献   
269.
The promulgation of odor control rules, increasing public concerns, and U.S. Environmental Protection Agency (EPA) air regulations in nonattainment zones necessitates the remediation of a wide range of volatile organic compounds (VOCs) generated by the rendering industry. Currently, wet scrubbers with oxidizing chemicals are used to treat VOCs; however, little information is available on scrubber efficiency for many of the VOCs generated within the rendering process. Portable gas chromatography/mass spectrometry (GC/MS) units were used to rapidly identify key VOCs on-site in process streams at two poultry byproduct rendering plants. On-site analysis was found to be important, given the significant reduction in peak areas if samples were held for 24 hr before analysis. Major compounds consistently identified in the emissions from the plant included dimethyl disulfide, methanethiol, octane, hexanal, 2-methylbutanal, and 3-methylbutanal. The two branched aldehydes, 2-methylbutanal and 3-methylbutanal, were by far the most consistent, appearing in every sample and typically the largest fraction of the VOC mixture. A chlorinated hydrocarbon, methanesulfonyl chloride, was identified in the outlet of a high-intensity wet scrubber, and several VOCs and chlorinated compounds were identified in the scrubbing solution, but not on a consistent basis. Total VOC concentrations in noncondensable gas streams ranged from 4 to 91 ppmv. At the two plants, the odor-causing compound methanethiol ranged from 25 to 33% and 9.6% of the total VOCs (v/v). In one plant, wet scrubber analysis using chlorine dioxide (ClO2) as the oxidizing agent indicated that close to 100% of the methanethiol was removed from the gas phase, but removal efficiencies ranged from 20 to 80% for the aldehydes and hydrocarbons and from 23 to 64% for total VOCs. In the second plant, conversion efficiencies were much lower in a packed-bed wet scrubber, with a measurable removal of only dimethyl sulfide (20-100%).  相似文献   
270.
Changes in the trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling in the United States. In response to these challenges, new and innovative approaches to automobile recycling are being developed. This paper presents the findings of a recent study to examine the impacts of these changes on the life cycle energy consumption of automobiles and on the quantity of waste that must be disposed of. Given the recycle status quo, trends in material composition and the viability of recycling the non-metallic components of the typical automobile are of secondary importance when compared to the energy consumed during the life of the automobile. The energy savings resulting from small changes in the fuel efficiency of a vehicle overshadow potential energy losses associated with the adoption of new and possibly non-recyclable materials. Under status quo conditions, the life cycle energy consumed by the typical automobile is projected to decrease from 599 million Btus in 1992 to 565 million Btus in 2000. Energy consumed during the manufacture of the typical car will increase from about 120 to 140 million Btus between 1992 and 2000, while energy used during vehicle operation will decrease from 520 to 480 million Btus. This study projects that energy saved at the recycle step will increase from 41 million Btus in 1992 to 55 million Btus in 2000. This study also investigated the energy impacts of several potential changes to the recycle status quo, including the adoption of technologies to retrieve the heat value of ASR by incineration and the recycle of some or all thermoplastics in the typical automobile. The study estimates that under optimistic conditions —i.e., the recycling of all thermoplastics and the incineration with heat recovery of all remaining ASR —about 8 million Btus could be saved per automobile —i.e., an increase from about 55 to 63 million Btus. In the more realistic scenario —i.e., the recycling of easy-to-remove thermoplastic components (bumper covers and dash-boards) —the potential energy savings are about 1 million Btus per vehicle. It is estimated that the annual quantity of ASR in the United States could be reduced from about 5 billion pounds to as little as 1 billion pounds of ash if all ASR is incinerated. Alternatively, ASR quantity could be reduced to about 4 billion pounds if all thermoplastics in automobiles are recycled. However, in the case of recycling only thermoplastic bumper covers and dashboards, the quantity of ASR would be reduced by only 0.2 billion pounds. A significant reduction or increase in the size of the ASR waste stream will not in itself have a large impact on the solid waste stream in the United States.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号