首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14812篇
  免费   536篇
  国内免费   5794篇
安全科学   918篇
废物处理   943篇
环保管理   1172篇
综合类   8157篇
基础理论   2621篇
环境理论   2篇
污染及防治   5667篇
评价与监测   547篇
社会与环境   499篇
灾害及防治   616篇
  2024年   3篇
  2023年   224篇
  2022年   683篇
  2021年   548篇
  2020年   412篇
  2019年   432篇
  2018年   537篇
  2017年   656篇
  2016年   813篇
  2015年   1013篇
  2014年   1162篇
  2013年   1616篇
  2012年   1268篇
  2011年   1345篇
  2010年   964篇
  2009年   955篇
  2008年   1014篇
  2007年   925篇
  2006年   831篇
  2005年   607篇
  2004年   423篇
  2003年   549篇
  2002年   483篇
  2001年   408篇
  2000年   434篇
  1999年   473篇
  1998年   422篇
  1997年   351篇
  1996年   333篇
  1995年   284篇
  1994年   235篇
  1993年   188篇
  1992年   151篇
  1991年   88篇
  1990年   69篇
  1989年   54篇
  1988年   47篇
  1987年   30篇
  1986年   25篇
  1985年   13篇
  1984年   15篇
  1983年   18篇
  1982年   11篇
  1981年   12篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
271.
Plastic waste is a source of organic contaminants such as hexabromocyclododecanes (HBCDs). HBCDs have been found to cause developmental and reproductive toxicity; it is important to investigate the occurrence and metabolization of HBCDs in the soil environments with plastic waste contamination. This work analyzed HBCDs and their metabolites in soil and plant samples collected from Xinle and Dingzhou—the major plastic waste recycling centers in North China. Results showed that total HBCD concentrations in soils followed the order: plastic waste treatment site (11.0–624 ng/g) > roadside (2.96–85.4 ng/g) ≥ farmland (8.69–55.5 ng/g). HBCDs were detected in all the plant samples with total concentrations ranging from 3.47 to 23.4 ng/g. γ-HBCD was the dominant congener in soils, while α-HBCD was preferentially accumulated in plants. Compositions of HBCD isomers in soils and plants were significantly different (P < 0.05) among sampling sites and among plant species. HBCDs in farmland soil and all plant samples exhibited high enantio-selectivity based on the enantiomeric fractions (EFs). Furthermore, metabolites of pentabromocyclododecenes (PBCDEs) were frequently identified in soils, and mono-OH-HBCDs were the most common ones in plants. This study for the first time provides evidences of HBCD contamination in the soil-plant system caused by plastic waste, their stereo-selectivity, and metabolization behavior, improving our understanding of the environmental behavior and fate of HBCDs.  相似文献   
272.
To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg?1) was nearly tenfold as much as that of saline soil (229.49 mg kg?1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O–H, C=O, and C–O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM–EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.  相似文献   
273.
As a primary factor responsible for lake eutrophication, a deeper understanding of the phosphorus (P) composition and its turnover in sediment is urgently needed. In this study, P species in surface sediments from a Chinese large eutrophic lake (Lake Taihu) were characterized by traditional fractionation and 31P nuclear magnetic resonance (NMR) spectroscopy, and their contributions to the overlying water were also discussed. Fractionation results show that NaOH-P predominated in the algal-dominated zone, accounting for 60.1% to total P in Zhushan Bay. Whereas, refractory fractions including HCl-P and residual-P were the main P burial phases in the macrophyte-dominated zone, the center and lakeshore. Recovery rates of the total P and organic P were greatly improved by using a modified single-step extraction of NaOH-EDTA, ranging from 22.6 to 66.1% and from 15.0 to 54.0%. Ortho-P, monoester-P, and pyro-P are identified as the major P components in the NaOH-EDTA extracts by 31P NMR analysis. Trace amount of DNA-P appeared only in sediments from algal- and macrophyte-dominated zones, ascribing to its biological origin. The relative content of ortho-P is the highest in the algal-dominated zone, while the biogenic P including ester-P and pyro-P is the highest in the macrophyte-dominated zone. Moreover, ortho-P and pyro-P correlated positively with TP and chlorophyll a in the overlying water, whereas only significant relationships were found between monoester-P, biogenic P, and chlorophyll a. These discrepancies imply that inorganic P, mainly ortho-P, plays a vital role in sustaining the trophic level of water body and algal bloom, while biogenic P makes a minor contribution to phytoplankton growth. This conclusion was supported by the results of high proportion of biogenic P in algae, aquatic macrophytes, and suspended particulate from the published literature. This study has significant implication for better understanding of the biogeochemical cycling of endogenous P and its role in affecting lake eutrophication.  相似文献   
274.
The effect of pH on phosphine formation during anaerobic cultivation of granular sludge was investigated. The sludge was taken from full-scale anaerobic reactors treating brewery wastewater. Acetate and phosphate were used as the carbon source and phosphorus source respectively. After 10 days cultivation in the dark, results showed that acidic conditions were more favorable for free phosphine production. At pH 5, the optimum concentration 86.42 ng PH3 m-3 of free phosphine was obtained. The level at pH 7 was reduced to 18.53 ng PH3 m-3, about 1/5 of the maximum. The maximum concentration of matrix-bound phosphine of 3.30 ng PH3 kg-1 wet sludge was achieved at pH 6. More than 83% of the total phosphine was matrix-bound phosphine, which accounted for 0.003-0.009 per thousand of the phosphate removal, while free phosphine comprised 0.00002-0.001 per thousand of the phosphate removal. Most of the phosphorus removal from solution was turned into chemical precipitation or was adsorbed by sludge. The mechanism of the phosphate reduction-step in the formation of phosphine production is still unknown. The promotion of phosphine formation by low pH is compatible with an acidic bio-corrosion mechanism of metal particles in the sludge or of metal phosphides which form phosphine at low pH.  相似文献   
275.
Wang JM  Maier RM  Brusseau ML 《Chemosphere》2005,60(5):725-728
It is well known that the limited aqueous solubilities of polycyclic aromatic hydrocarbons (PAH) often reduce their bioavailability to bacterial populations. The objective of this study was to test the impact of a solubility-enhancement reagent, hydroxypropyl-beta-cyclodextrin (HPCD), on the bioavailability and biodegradation of pyrene. No measurable loss of pyrene occurred for the control vials throughout the first 22 weeks of the experiment, indicating the absence of mass loss via abiotic transformation and volatilization. The vials containing pyrene and the degrader isolate (Burkholderia CRE 7), but no HPCD, also exhibited no measurable loss of pyrene throughout the experiment. Conversely, biodegradation of pyrene appears to have been initiated after approximately 15 weeks for the vials containing 10(4) mg l(-1) HPCD. By the end of the experiment, approximately 14% (w/w) of the pyrene was biodegraded in the presence of HPCD. These results indicate that HPCD may be useful for enhancing the bioavailability and biodegradation of pyrene and other PAHs.  相似文献   
276.
RuO2/La2O3/TiO2悬浮体系中直接耐晒黑G的光催化降解   总被引:2,自引:0,他引:2  
钛酸丁酯为前驱体,采用溶胶-凝胶-浸渍法制备RuO2/La2O3/TiO2复合光催化剂,以紫外灯为光源,研究了催化剂组成、煅烧温度、溶液pH值等因素对直接耐晒黑G(DFBG)光催化降解的影响.结果表明掺杂量w(La2O3)1.39%、w(RuO2)0.12%、煅烧温度500℃(2 h)、溶液pH值7.3时,光催化活性最佳.当通气量为200 mL/min,催化剂投加量为150mg时,50 mg/L的DFBG溶液经60 min降解,其降解率近100%.DFBG的光催化降解服从Langmuir-Hinshelwood动力学模型,测得相应的动力学参数k=7.42×10-3mmol/L·min,K=19.54 L/mmol.  相似文献   
277.
讨论了中国南方某城市自来水厂饮用水中的多环芳烃残留规律以及现有净水工艺对多环芳烃的去除效果。研究结果表明,该自来水厂饮用水中检出多环芳烃以2~4环芳烃为主,强致癌性高环数多环芳烃均在检出限以下,且多环芳烃总量未超出中国供水行业标准(2000年)的相关限值。各处理工艺段中,砂滤过程对多环芳烃的去除效果最好,相较于原水对多环芳烃总量的去除率可达64%。  相似文献   
278.
着重论述了空气微生物气溶胶的研究方法,主要有培养基法和非培养基法。培养基法是传统的微生物研究方法,需要花费大量的时间和劳动力,只能够检测活的能够在培养基上生长的微生物,可以大致反映空气中的微生物气溶胶。非培养基法,主要是PCR法,具有敏感性高、快速、特异性强等特点,能够检测出环境样品中绝大多数的微生物,是一种微生物气溶胶检测的有效途径。最后指出实时持续的监测是将来空气微生物研究的努力方向和发展趋势。  相似文献   
279.
气-水联合反冲洗膜污染防治技术研究   总被引:1,自引:0,他引:1  
采用气水联合反冲洗技术,考察了气水比(Qg/Ql)、反冲洗周期及其对膜污染的防治效果。结果表明,气水联合反冲洗较单独气或水反冲洗效果好;在过滤周期20min,反冲洗时间1min,气水比1.5时,气水联合反冲洗能够恢复膜通量到膜清水通量的80%以上。此法可大幅度清除沉积在膜表面的泥饼层,恢复膜通量,维持膜过滤性能的稳定,是一种较为有效的膜污染防治技术。  相似文献   
280.
城市污水污泥的重金属离子Pb、Zn超过国家固体废弃物排放最高允许值,属于危险废物。污水污泥的最佳出路是无害化处理,资源化利用,产业化发展。研究了以上海市污水污泥为原料,加入一定比例的固化剂和矿物掺合料使之固结,经养护满足路用强度性能,测试其固结体重金属离子浸出质量浓度亦满足国家固体废弃物排放标准,即污泥中的重金属离子得到有效的束缚和稳定固化,既解决了环境问题,又为污泥产业化发展开辟了新的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号