首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12700篇
  免费   676篇
  国内免费   4492篇
安全科学   1083篇
废物处理   732篇
环保管理   1108篇
综合类   7166篇
基础理论   2114篇
环境理论   2篇
污染及防治   4051篇
评价与监测   608篇
社会与环境   518篇
灾害及防治   486篇
  2024年   36篇
  2023年   201篇
  2022年   659篇
  2021年   565篇
  2020年   502篇
  2019年   387篇
  2018年   496篇
  2017年   606篇
  2016年   548篇
  2015年   728篇
  2014年   1000篇
  2013年   1330篇
  2012年   1177篇
  2011年   1194篇
  2010年   929篇
  2009年   886篇
  2008年   931篇
  2007年   799篇
  2006年   652篇
  2005年   488篇
  2004年   387篇
  2003年   442篇
  2002年   391篇
  2001年   329篇
  2000年   327篇
  1999年   270篇
  1998年   266篇
  1997年   265篇
  1996年   241篇
  1995年   182篇
  1994年   133篇
  1993年   130篇
  1992年   112篇
  1991年   80篇
  1990年   58篇
  1989年   28篇
  1988年   27篇
  1987年   11篇
  1986年   17篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
911.
912.
913.
CMT监测井在黑河流域地下水监测中的应用   总被引:3,自引:0,他引:3  
以CMT监测井在黑河流域的应用为基础,通过对监测数据和采集的水样进行分析,了解了黑河流域地下水水位动态变化,掌握了黑河流域地下水水化学垂向分布规律,为合理利用黑河流域水资源提供了科学依据。  相似文献   
914.
基于2008—2012年污染源环境统计数据,采用Spearman秩相关系数法等分析南水北调中线陕西水源区污废水及污染物年排放总量变化趋势,借助ArcGIS空间分析功能表征水源区污染源排放的空间分布特征。结果表明:2008—2012年水源区污废水和NH_3-N年排放总量呈显著上升趋势,COD、As、Pb、Cd、Cr和Hg年排放总量呈抛物线型变化,总体上COD、Pb、Cd年排放总量增加,As、Cr和Hg年排放总量降低。水源区污废水及污染物排放量空间差异明显,污废水、COD和NH_3-N排放涉及流域所有区县,其排放量从干流到流域边缘呈现较明显的梯度变化,即位于流域中心或地级市行政中心的区县排放量明显高于位于流域边缘的区县;As、Pb、Cd、Cr和Hg排放量呈现明显的区域分布,主要分布在勉县等8个区县。  相似文献   
915.
调查分析蔷薇河非点源废水排放情况,结合相关统计资料,核算出蔷薇河非点源废水污染物的排放量。结论表明,农田回归水污染是蔷薇河水体非点源污染的主要因素。  相似文献   
916.
Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h?1 on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha?1.  相似文献   
917.
Organochlorine pesticides (OCPs) have variously been phased out in agricultural activities, but they are still widely detected in air, water, and soil systems due to their recalcitrant nature in the environment. The purposes of this study were to assess potential OCP pollution via dry and wet deposition over the fast developing Pearl River Delta area with 41,700 km2, where the main effort has been focused on emerging pollutants such as petroleum hydrocarbons and PM2.5. We quantified both the dry and wet deposition fluxes of 19 OCPs including dichlorodiphenyltrichloroethanes (DDTs), endosulfans (Endos), and hexachlorocyclohexanes (HCHs). The results showed that each year about 67.4, 42.0, 15.0, and 8.07 kg of total OCPs, DDTs, Endos, and HCHs were returned to the ground, among which 11.7, 10.4, 0.84, and 0.16 kg were in the dry deposition forms. The large spatial variations in OCP deposition fluxes indicated that OCP pollution in the air is mainly influenced on local scales because evaporation from local soil is likely the major source of the phased out OCPs. Source analysis indicated that DDTs may be still in use as antifouling agent and/or dicofol, but Endos and HCHs were mainly derived from the residual of historical usage. The study suggests that the historical OCP pollutants are persistent at high levels in this area and should not be overlooked, while we tackle emerging pollutants.  相似文献   
918.
In the previous study, Mirabilis jalapa L. had revealed the basic Cd hyperaccumulator characteristics, but the accumulation ability was not as strong as that of other known Cd hyperaccumulators. In order to improve the accumulation ability of this ornamental plant, the chelants were used to activate the Cd in soil. As a substitute, ethylene glycol bis(2-aminoethyl) tetraacetic acid (EGTA) was selected to testify whether it has better effectiveness and can bring lesser metal leaching risk than EDTA. The data showed that the growth of M. jalapa was inhibited, while the Cd concentration of the plant was significantly increased under the treatments containing EDTA or EGTA. The Cd translocation ability under the EGTA treatments was higher than that under the EDTA treatments. The available Cd resulted from the application of chelant EGTA to the contaminated soils can be limited to the top 5 cm, while the application of chelant EDTA to the contaminated soils can be limited to the top 10 cm. In a word, EGTA showed better effectiveness than EDTA in enhancing Cd phytoextraction of M. jalapa. As an ornamental plant, M. jalapa has the potential to be used for phytoextraction of Cd-contaminated soils and it can beautify the environment at the same time.  相似文献   
919.
Severe rainstorms cause vertical mixing that modifies the internal dynamics (e.g., internal seiche, thermal structure, and velocity filed) in warm polymictic lakes. Yuan Yang Lake (YYL), a subtropical, subalpine, and seasonally stratified small lake in the north-central region of Taiwan, is normally affected by typhoons accompanied with strong wind and heavy rainfall during the summer and fall. In this study, we used the field data, statistical analysis, spectral analysis, and numerical modeling to investigate severe rainstorm-induced mixing in the lake. Statistical determination of the key meteorological and environmental conditions underlying the observed vertical mixing suggests that the vertical mixing, caused by heat loss during severe rainstorms, was likely larger than wind-induced mixing and that high inflow discharge strongly increased heat loss through advection heat. Spectral analysis revealed that internal seiches at the basin scale occurred under non-rainstorm meteorological conditions and that the internal seiches under the rainstorm were modified on the increase of the internal seiche frequencies. Based upon observed frequencies of the internal seiches, a two-dimensional model was simulated and then appropriate velocity patterns of the internal seiches were determined under non-rainstorm conditions. Moreover, the model implemented with inflow boundary condition was conducted for rainstorm events. The model results showed that the severe rainstorms promoted thermal destratification and changed vertical circulation of the basin-scale, internal seiche motion into riverine flow.  相似文献   
920.
Twenty-four major and trace elements and the mineralogical composition of four sediment cores along the Pearl River and estuary were analyzed using ICP-AES, ICP-MS, and X-ray diffraction (XRD) to evaluate contamination levels. The dominant minerals were quartz, kaolinite, and illite, followed by montmorillonite and feldspars, while small amounts of halite and calcite were also observed in a few samples. Cluster analysis (CA) and principal component analysis (PCA) were performed to identify the element sources. The highest metal concentrations were found at Huangpu, primarily due to wastewater treatment plant discharge and/or the surreptitious dumping of sludge, and these data differed from those of other sources. Excluding the data from Huangpu, the PCA showed that most elements could be considered as lithogenic; few elements are the combination of lithogenic and anthropogenic sources. An antagonistic relationship between the anthropogenic source metals (K, Ba, Zn, Pb, Cd, Ag, Tl, and U) and marine source metals (Na, Mg, Ti, V, and Ca) was observed. The resulting normalized Al enrichment factor (EF) indicated very high or significant pollution of Cd, Ag, Cu, Zn, Mo, and Pb at Huangpu, which may cause serious environmental effects. Conflicting results between the PCA and EF can be attributed to the background values used, indicating that background values must be selected carefully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号