In this study, we investigated the Cr(VI) uptake mechanism in an indigenous Cr(VI)-tolerant bacterial strain -Bacillus cereus through batch and microscopic experiments. We found that both the cells and the supernatant collected from B. cereus cultivation could reduce Cr(VI). The valence state analysis revealed the complete transformation from Cr(VI) into Cr(III) by living B. cereus. Further X-ray absorption fine structure and Fourier transform infrared analyses showed that the reduced Cr(III) was coordinated with carboxyl and amido functional groups from either the cells or supernatant. Scanning electron microscopy and atomic force microscopy observation showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. However, Cr(III) could also be detected in bacterial inner portions by using transmission electron microscopy thin section analysis coupled with energy dispersive X-ray spectroscopy. Through quantitative analysis of chromium distribution, we determined the binding ratio of Cr(III) in supernatant, cell debris and cytoplasm as 22%, 54% and 24%, respectively. Finally, we further discussed the role of bacterium-origin soluble organic molecules to the remediation of Cr(VI) pollutants. 相似文献
Humans have continuously interacted with natural systems, resulting in the formation and development of coupled human and natural systems (CHANS). Recent studies reveal the complexity of organizational, spatial, and temporal couplings of CHANS. These couplings have evolved from direct to more indirect interactions, from adjacent to more distant linkages, from local to global scales, and from simple to complex patterns and processes. Untangling complexities, such as reciprocal effects and emergent properties, can lead to novel scientific discoveries and is essential to developing effective policies for ecological and socioeconomic sustainability. Opportunities for truly integrating various disciplines are emerging to address fundamental questions about CHANS and meet society's unprecedented challenges. 相似文献
The residual levels of organochlorine pesticides (OCPs) in the dust fall around Lake Chaohu were measured using gas chromatography mass spectrometry from April 2010 to March 2011. The fluxes, components, temporal–spatial variations, and sources of OCPs were also analyzed. Twenty-one types of OCPs were detected in the dust fall samples around Lake Chaohu, with a total concentration of 51.54?±?36.31 ng/g and a total flux of 10.01?±?13.69 ng/(m2 day). Aldrin (35.3 %), endosulfan (39.1 %), dichlorodiphenyltrichloroethanes (DDTs) (49.8 %), and isodrin (37.1 %) were the major OCPs in the spring, summer, autumn, and winter, respectively. Both the residual level and the flux were higher in the spring than in other seasons and higher at the outer lake sampling sites than inner lake sampling site. The potential source of the hexachlorcyclohexanes in the dust fall may be recent lindane usage. The DDTs mainly came from historical dicofol usage, and a significant input of DDT was found during April and June. The presence of endosulfan may be due to the present use of technical endosulfan. The aldrin in the dust might be due to its occasional usage, and isodrin may be a result of long-distance transport from other countries. 相似文献
Objective: The objective of this study was to investigate whether the 5-point harness or the impact shield child restraint system (CRS) or both have the potential to cause chest injuries to children. This is determined by examining whether the loading to the chest reaches the internal organ injury threshold for children.
Method: The chest injury risk to a child occupant in a CRS was investigated using Q3 dummy tests, finite element (FE) simulations (Q3 dummy and human models), and animal tests. The investigation was done for 2 types of CRSs (i.e., the impact shield CRS and 5-point harness CRS) based on the UN R44 dynamic test specifications.
Results: The tests using a Q3 dummy indicated that although the chest deflection of the dummy in the impact shield CRS was large, it was less than the injury threshold (40 mm). Computational biomechanics simulations (using finite element FE analysis) showed that the Q3 dummy's chest is loaded by the shield and deforms substantially under this load. To clarify whether chest injuries due to chest compression can occur with an impact shield or with the 5-point harness CRS, 7 experiments were performed using Tibetan miniature pigs with weights ranging from 9.7 to 13 kg. Severe chest and abdominal injuries (lung contusion, coronary artery laceration, liver laceration) were found in the tests using the impact shield CRS. No chest injuries were present when using the 5-point harness CRS.
Conclusion: When using the impact shield CRS, the chest deformed substantially in dummy tests and FE simulations, and chest and abdominal injuries were observed in pig tests. It is possible that these chest injuries could also occur to child occupants sitting in the impact shield CRS. 相似文献
Mitigation and Adaptation Strategies for Global Change - As the top two plug-in electric vehicle (PEV) markets in the world, China and the United States of America (USA) have developed... 相似文献
To evaluate the long-term effects of reforestation types on soil erosion on degraded land, vegetation and soil properties under
conventional sloping farmland (CSF) and three different reforestation types including a Pinus massoniana secondary forest (PSF),
an Eucommia ulmoides artificial economic forest (EEF) and a natural succession type forest (NST), were investigated at runoff plot
scale over a six-year period in a red soil region of southern China. One hundred and thirty erosive rainfall events generating runoff in
plots were grouped into four rainfall types by means of K-mean clustering method. Erosive rainfall type I is the dominant rainfall type.
The amount of runoff and the soil loss under erosive rainfall type III were the most, followed by rain-fall type II, IV and I. Compared
with CSF treatment, reforestation treatments decreased the average annual runoff depth and the soil loss by 25.5%–61.8% and 93.9%–
96.2% during the study period respectively. Meanwhile, runoff depth at PSF and EEF treatments was significantly lower than that in
NST treatment, but no significant difference existed in soil erosion modulus among the three reforestation treatments. This is mainly
due to the improved vegetation properties (i.e., vegetation coverage, biomass of above- and below-ground and litter-fall mass) and soil
properties (i.e., bulk density, total porosity, infiltration rate and organic carbon content) in the three reforestation treatments compared
to CSF treatment. The PSF and EEF are recommended as the preferred reforestation types to control runoff and soil erosion in the red
soil region of southern China, with the NST potentially being used as an important supplement. 相似文献