首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   14篇
  国内免费   19篇
安全科学   4篇
环保管理   1篇
综合类   47篇
基础理论   8篇
污染及防治   10篇
评价与监测   6篇
社会与环境   1篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   8篇
  2018年   18篇
  2017年   1篇
  2015年   4篇
  2014年   7篇
  2013年   5篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有77条查询结果,搜索用时 109 毫秒
31.
基于重庆本地碳成分谱的PM2.5碳组分来源分析   总被引:13,自引:10,他引:3  
为了解重庆主城PM2.5中碳组分特征和来源,2012-05-02~2012-05-10日在商业区、工业区和居民区进行了PM2.5采样.利用TOR方法分析了8种碳组分,对3个不同功能区大气环境PM2.5以及燃煤尘、尾气尘(机动车尾气、船舶尾气、施工机械尾气)、生物质燃烧尘、餐饮油烟尘这6类源PM2.5中的8种碳组分进行了特征分析.在源的碳成分谱基础上,利用化学质量平衡(CMB)模型得到重庆本地PM2.5的碳来源指示组分,利用因子分析法解析出各类源对不同功能区内PM2.5碳组分的贡献率.结果表明,重庆地区燃煤尘、机动车尾气尘、船舶尾气尘、施工机械尾气尘、生物质燃烧尘、餐饮油烟尘的OC/EC值分别为6.3、3.0、1.9、1.4、12.7和31.3.EC2、EC3的高载荷指示柴油车尾气排放,OC2、OC3、OC4、OPC的高载荷指示燃煤排放,OC1、OC2、OC3、OC4、EC1指示汽油车尾气排放,OC3指示餐饮业排放,OPC指示生物质燃烧排放.商业区OC/PM2.5为17.4%,EC/PM2.5为6.9%,估算得到,二次有机碳(SOC)/OC为40.0%;工业区OC/PM2.5为15.5%,EC/PM2.5为6.6%,SOC/OC为37.4%;居民区OC/PM2.5为14.6%,EC/PM2.5为5.6%,SOC/OC为42.8%.工业区PM2.5中碳组分的主要来源为燃煤和汽油车尾气、柴油车尾气;商业区PM2.5中碳组分的主要来源为汽油车尾气、柴油车尾气和餐饮业油烟;居住区PM2.5中碳组分的主要来源为汽油车尾气、餐饮业油烟、柴油车尾气.  相似文献   
32.
道路交通扬尘采样方法研究进展   总被引:2,自引:0,他引:2  
道路交通扬尘是我国北方城市环境空气中PM10和PM2.5污染的重要来源之一,要改善环境空气质量,进一步降低颗粒物浓度,必须采取有效措施控制道路交通扬尘,而控制扬尘的第一步是确定采样方法。目前我国还没有标准化的道路交通扬尘采样方法,本文归纳了当前国内外应用的主要方法,重点介绍了降尘法、积尘负荷法和快速检测法三种采样方法,并对三种方法进行了比较,分析了各自具有的优势和存在的问题。最后指出,快速检测法是最有潜力的采样方法,未来还需进一步的研究,争取早日制订出适合我国国情的标准化的道路交通扬尘采样方法。  相似文献   
33.
中国绿色建材发展研究   总被引:7,自引:0,他引:7  
绿色建材是一种不破坏环境,不能保护环境,节约能源和资源,满足社会发展的新型建筑材料。本文扼要介绍了我国绿色建材的发展现状,着重从三个方面分析了绿色建材评价标准,加强和完善绿色建材认证制度等建议以促进我国绿色建材的发展,从而保证环境、社会、经济可持续发展。  相似文献   
34.
利用CH2Cl2和超声对35个南开大学学生宿舍室内降尘样品中的DMP、DEP、DBP、BBP、DEHP 和DOP等6种PAES进行提取分离,采用GC-MS定量分析,研究了PAEs污染变化特征及暴露风险.结果表明,南开大学学生宿舍室内降尘中PAEs污染以DEHP和DBP为主,中位值浓度分别为126.916μg/g和123.591μg/g,两者之和占Σ6PAEs浓度的99%以上,室内降尘中PAEs污染程度和类型与室内含增塑剂产品的数量、室内清洁通风情况及成员性别有关;经口暴露水平大于皮肤,其中DBP、DEHP的暴露量高于美国,占人体总PAEs摄入量比例较高,故学生宿舍降尘中PAEs暴露应给予重视.  相似文献   
35.
在特定时间特定地点利用溶蚀器PM2.5采样系统进行PM2.5采样前,应首先确定溶蚀器涂层溶液最适浓度.为确定在天津市冬季利用蜂窝状溶蚀器PM2.5采样系统采样的最优化条件,于2014年1月1日~2月24日,在南开大学理化楼楼顶进行蜂窝状溶蚀器涂层溶液最适浓度的条件实验.结果表明:在天津地区冬季, 蜂窝状溶蚀器的碳酸钠涂层溶液最适浓度为4%,柠檬酸涂层溶液最适浓度为5%; 环境空气中HCl气体对PM2.5中Cl-的质量浓度测定影响不大,而HNO3、SO2、NH3等酸/碱性气体对PM2.5中相对应离子的质量浓度测定影响较大.  相似文献   
36.
为研究盘锦市秋季PM_(2.5)中水溶性离子污染特征及来源,于2016年10月在盘锦市开发区、文化公园和第二中学采集PM_(2.5)样品,用离子色谱分析其水溶性离子.同时,分析了PM_(2.5)及水溶性离子浓度特征,并通过离子平衡计算、相关性分析和聚类分析对其污染特征和来源进行研究.结果表明:盘锦市秋季PM_(2.5)平均质量浓度为(52.71±19.44)μg·m~(-3),低于环境空气质量标准(GB 3095—2012)日均浓度限值(75μg·m~(-3)),不同点位之间表现为:开发区第二中学文化公园.开发区、文化公园和第二中学的水溶性离子总质量浓度分别为13.64、13.16和13.19μg·m~(-3),分别占PM_(2.5)浓度的22.83%、29.72%和24.36%,各点位均表现为NO~-_3、SO■和NH~+_4质量浓度较大.阴阳离子当量比值(AE/CE)均大于1,表明采样期间盘锦市颗粒物整体偏酸性.离子间相关关系分析显示,SNA的主要存在形式为(NH_4)_2SO_4、NH_4NO_3和KNO_3等.NO~-_3/SO■的均值为1.41,说明移动源对PM_(2.5)的贡献大于固定源.通过聚类分析得出,盘锦市秋季PM_(2.5)中水溶性离子主要来源于气态污染物的二次转化、生物质和化石燃料燃烧及土壤扬尘或建筑扬尘排放.  相似文献   
37.
为研究天津市道路扬尘PM_(2.5)中水溶性无机离子组分特征及其来源,于2015年4月采集天津市道路扬尘样品,利用再悬浮采样器将采集的样品悬浮到滤膜上,用离子色谱仪分析其水溶性无机离子组分,利用相关分析和比值分析及主成分法对其污染特征和来源进行探讨.结果表明,天津市8种水溶性无机离子占道路扬尘PM_(2.5)的6.13%±2.32%;不同道路类型道路扬尘PM_(2.5)中水溶性无机离子总量差异较大.相关性分析表明Na~+、K~+、Mg~(2+)和Ca~(2+)这4种离子同源性较高.NO_3~-/SO_4~(2-)比值显示固定源对天津市春季道路扬尘PM_(2.5)的影响更为显著.通过主成分分析法可知,天津市春季道路扬尘PM_(2.5)主要来源于燃煤源、移动源、生物质燃烧源和建筑施工扬尘.  相似文献   
38.
为探讨盘锦市冬季PM_(2.5)水溶性离子污染特征和来源,于2017年1月采集3个点位的PM_(2.5)样品,用ICS-900离子色谱仪分析了8种离子(Na~+、Mg~(2+)、Ca~(2+)、K~+、NH_4~+、SO_4~(2-)、Cl~-和NO_3~-).开展了PM_(2.5)和离子浓度特征分析、硫氧化率(SOR)和氮氧化率(NOR)计算、离子平衡计算、主成分分析等.结果表明:盘锦市冬季PM_(2.5)浓度与水溶性离子浓度特征为文化公园开发区第二中学;SO_4~(2-)、NO_3~-、NH_4~+质量浓度较大;冬季硫氧化率(SOR)和氮氧化率(NOR)的均值均大于0.10,说明SO_4~(2-)、NO_3~-主要由SO_2和NO_x转化而来;阳离子和阴离子当量相关性较强;开发区整体上呈现出中性,文化公园与第二中学呈现出偏碱性;盘锦市PM_(2.5)中水溶性离子主要来源于煤烟尘,生物质燃烧,二次粒子以及扬尘.  相似文献   
39.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气.  相似文献   
40.
为研究石家庄市冬季道路积尘PM2.5中金属元素污染特征及来源,利用移动式采样法收集石家庄市不同类型铺装道路积尘,使用ICP-MS和ICP-OES分析测定PM2.5中Cr、Zn、Mn、Cu、Pb、Ni、Sn、As、Sb、Co、Mo、Cd、Al、Mg、Ca、Fe共16种元素的质量分数.结果表明:石家庄市冬季道路积尘PM2.5中金属元素质量分数之和依次为支路>快速路>主干道>次干道,与车流量、车辆类型、道路类型等影响因素有关,w(Mg)、w(Ca)、w(Cr)、w(Cu)、w(Ni)、w(Zn)、w(Pb)、w(Sn)、w(Sb)、w(Mo)、w(Cd)的平均值均高于当地土壤背景值,是背景值的1.2~40.5倍,其中Cr、Zn、Cu、Pb、Sn、Sb、Mo、Cd等元素中,除Pb的富集因子(9.38)接近10外,其他均高于10,来源于人为污染.Igeo(地累积指数)评价结果显示,Cr、Sn(Igeo为4~5)达到强-极强污染水平;Cd、Cu(Igeo为3~4)达到强污染水平;Sb、Mo、Zn(Igeo为2~3)为中-强污染水平,Pb(Igeo为1~2)为中污染水平.多元统计分析结果表明,石家庄市冬季道路积尘中金属元素来源可分为四大类:As、Mo、Zn、Cd、Ni、Pb主要来自机动车和大气中的燃煤沉降;Mn、Co、Sb来自于自然来源、机动车尾气的排放和焊接材料及轴承的磨损;Cr、Cu、Sn主要来自于工业排放的沉降和机动车刹车片磨损;Al、Ca、Mg、Fe主要来自绿化带或机动车携带的土壤尘.研究显示,石家庄市冬季道路积尘PM2.5中金属元素污染严重,主要来源于交通排放.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号