首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  国内免费   50篇
安全科学   5篇
环保管理   1篇
综合类   56篇
基础理论   25篇
污染及防治   23篇
社会与环境   1篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   6篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   4篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
11.
秸秆固定化石油降解菌降解原油的初步研究   总被引:1,自引:0,他引:1  
用秸秆做载体固定嗜碱芽孢杆菌(Bacillus alcalophilus SG)降解原油,其原油去除率为73.88%,高于单纯投加菌液或者菌液与秸秆的混合物的原油去除率.秸秆的最佳投加量(干重)为25.0 g/L,最佳固定化时间为30 h.用预处理过的秸秆固定SG,降低了固定化SG的原油去除率.在固定化培养基中添加无机盐离子,促进了固定化SG对原油的降解.不同初始pH的原油培养基在固定化SG降解原油的过程中逐渐呈中性或偏碱性.固定化SG在pH 6.0~10.0时对原油均有不错的降粘能力.  相似文献   
12.
从含油废水中筛选分离到1株原油降解菌XD-1,鉴定为假单胞菌(Pseuomonas sp.).初步实验表明菌XD-1具有较强的产表面活性剂乳化原油的作用,对该菌的产表面活性剂性能进行了研究.实验证明,菌XD-1所产表面活性剂为脂肽类物质,菌在生长对数期产表面活性剂,表面活性剂的产生为生长相关型;充足的碳源是产表面活性剂的必需条件,菌利用原油为碳源时能持续大量地产表面活性剂;原油和尿素为产表面活性剂的最适碳源和氮源,菌XD-1产表面活性剂的最佳营养培养基组成为葡萄糖10 g,尿素4 g,磷酸二氢钾1 g,微量元素液4 mL,水1 L,pH 8.0.  相似文献   
13.
刘妍妍  龙焰  尹华  叶锦韶  何宝燕  张娜 《环境科学》2013,34(11):4349-4355
设计全因子实验研究了NO-3-N对填埋10~12 a的矿化垃圾中兼/厌氧甲烷氧化作用的影响.结果表明,兼/厌氧条件下,NO-3-N能促进矿化垃圾中CH4的去除.初始CH4和NO-3-N对CH4去除和N2产生有明显影响,且两者具有交互作用(P<0.05).CH4去除量随着初始CH4体积分数的增加而增加,添加一定含量的NO-3-N能促进CH4去除,同时通入一定体积分数CH4可以明显促进反硝化作用,说明矿化垃圾中NO-3-N还原能与兼/厌氧甲烷氧化耦合.本实验条件下,初始CH4体积分数为30%,NO-3-N含量为110 mg·kg-1时耦合效应较好.  相似文献   
14.
白腐菌对十溴联苯醚的酶促降解研究   总被引:3,自引:0,他引:3  
考察了白腐菌菌体、胞外酶、胞内酶对十溴联苯醚(BDE-209)的降解性能,结果表明,白腐菌菌体、胞外酶、胞内酶对浓度为1 mg.L-1的BDE-209的降解率分别为60.17%、54.14%、22.32%,白腐菌对BDE-209的降解主要由胞外酶完成.进一步考察了温度、pH、BDE-209浓度对白腐菌胞外酶降解BDE-209的影响,结果显示,胞外酶降解BDE-209的最适条件为温度30℃、pH 4—5、BDE-209浓度1 mg.L-1.白腐菌胞外酶降解BDE-209前后红外光谱测定结果证实,BDE-209降解过程与Br—C、CH2—O—CH2等基团有关.降解后体系GC-MS谱图显示,BDE-209降解过程中存在脱Br作用.  相似文献   
15.
混合菌对石油的降解   总被引:16,自引:0,他引:16  
从含油污水中分离得到4株能高效降解石油的微生物菌株(X2、X3、X4、X5),经鉴定,4株菌分别属于黄单胞菌属(Xanthomonas sp.)、动胶菌属(Zoogloea sp.)、芽孢杆菌属(Bacillus sp.)和邻单胞菌属(Plesiomonas sp.).通过观察4株菌在原油培养基中的生长变化过程,确定了其中的优势菌;并对4株菌进行复配实验以确定各株菌混合后的石油降解效果;用正交实验法确定达到最佳石油降解效果各菌的投加量;通过对残油的Gc-MS测定分析,确定各菌在降解石油时所起的作用.结果表明,混合菌株中菌X4为优势菌,且有高的降解效果(达68,60%),其它3株降解率不高的菌混合投加也能达到较高的降解效果(达63.17%),菌X4是混合菌株维持高降解率的关键;达到最佳降解效果的各菌投加量分别为0.1%、0.1%、0.5%、2.0%;菌X2和菌X3降解C12-C16直链烃和少量支链烃,菌X4和菌X5对C12-C22直链烃有好的降解效果.图2表4参10  相似文献   
16.
融合菌-活性污泥联合曝气吸附处理重金属铬   总被引:1,自引:1,他引:1  
研究了融合菌RHJ-004与活性污泥联合曝气处理含铬废水的生物吸附性能。结果表明,融合菌RHJ-004与活性污泥联合曝气对铬具有良好的处理效果,投加10g/L菌体、6g/L污泥,处理50mg/L的铬液,还原率可达83.26%,去除率达72.04%。该吸附剂对处理酸性含铬废水具有很大的潜力,在pH=1 ̄5时,还原率均>80%,去除率均>70%;溶解氧是影响该吸附过程的一个重要参数,当DO=2 ̄4mg/L时,生物吸附效果较好,还原率达到75%以上,去除率也超过65%;融合菌RHJ-004与活性污泥对六价铬的联合吸附可用Langmuir模型和Freundlich模型描述,但Freundlich模型的拟合效果更好。  相似文献   
17.
利用复合生物吸附剂FY01与活性污泥作为吸附材料,探讨了柱式生物曝气法对高浓度含铬电镀废水的生物吸附效果.研究结果表明,FY01性能稳定,耐进水pH冲击能力较强.当进水pH=2~5、流速为500 mL/h时,10 g FY01和5 g活性污泥联合处理60.4 mg/L含铬电镀废水2 h后,铬的去除率达78%以上;在4℃冰箱和23~28℃实验室保存50 d的FY01对铬的去除分别在78%~83%和77%~84%之间.柱式生物曝气吸附法对含铬废水的处理效果理想,运行稳定.串联处理2000 mL总Cr、Cu2 和COD浓度分别为60.4、4.51和48.2 mg/L的电镀废水2 h后,去除率分别高达92.1%、99.2%和71.4%.  相似文献   
18.
假单胞菌N7的萘降解特性及其降解途径研究   总被引:1,自引:1,他引:0  
应用HPLC和UV分析技术,以萘为代表性多环芳烃污染物,研究了假单胞菌N7对水中萘的降解特性.结果表明,营养盐、微量元素的添加可使萘的降解率提高23.65%;溶解氧高于4.3 mg/L时萘降解率达95.66%并趋于稳定;随萘浓度增加降解率逐渐下降;在中性和弱碱性环境下,降解效果较好,萘降解率均在82.88%以上.在30℃、转速为165 r/min的摇床中处理pH7.5、萘浓度为100 mg/L的水样72 h,其最大降解率为95.66%.通过检测菌株N7处理含不同底物水样时其吸光度、pH和底物的变化情况,证实菌株N7亦能降解甲苯、二甲苯、苯酚、2,4-二硝基苯酚、苯甲酸、1-萘酚和水杨酸,并以其为唯一的碳源和能源生长繁殖,表明该菌株能适应环境中芳烃类物质种类的变化,具有很好的降解多样性.经UV-Vis和GC-MS分析各降解阶段的中间产物,初步确定了该菌对萘的降解途径:一条是邻苯二甲酸途径;另一条是水杨酸途径,萘先被氧化为1,2-二羟基萘,再开环生成水杨酸、邻苯二酚和2-羟基粘康酸半醛,最终进入三羧酸循环(TCA).  相似文献   
19.
原生质体电诱导融合构建去除重金属的高效菌   总被引:4,自引:0,他引:4  
研究了采用原生质体电融合技术构建高效的重金属去除菌;对影响电融合效率的几个参数,以及融合子的生长条件、除铬性能和遗传稳定性等方面进行了考察;确定了进行电融合的最佳条件,并选出 1株最好的融合株R32. 实验结果表明:R32不论是在处理低浓度还是高浓度的铬液时,其去除率和还原率都明显高于 2株亲本菌,处理低浓度含铬废水时,去除率和还原率可达到 100%;处理高浓度含铬废水(200mgL-1 )时,还原率仍可达 50%以上. 经过多次传代后,R32的除铬能力保持稳定. 当投菌量>10gL-1 (湿重)时,其去除率和还原率都在 80%以上. 正交实验结果显示,pH和Cu2 浓度对R32的生长影响都不大,这些特点都有利于R32在实际含铬废水处理中的应用. 图 4表 3参 14  相似文献   
20.
豆腐废水廉价培养制备微生物絮凝剂的研究   总被引:2,自引:0,他引:2  
从活性污泥中筛选出一株有高效絮凝活性的菌株,经鉴定为酵母属(Saccharomyces sp).以豆腐废水为廉价培养基培养高效菌产生微生物絮凝剂,含有絮凝活性物质的发酵液的上清液对4g/L高岭土悬浊液的絮凝率达95.6%.正交实验表明,产生微生物絮凝剂的优化培养条件为:豆腐废水体积分数25%,初始pH值5.0,摇床速度160r/min,温度30℃.培养产生的微生物絮凝剂最佳收获时间为48 h.微生物絮凝剂在酸性和碱性环境中均有较好的适应性和热稳定性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号