首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  国内免费   67篇
安全科学   4篇
环保管理   1篇
综合类   77篇
污染及防治   21篇
评价与监测   2篇
社会与环境   9篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2017年   5篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   9篇
  2010年   7篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1994年   3篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
41.
为改善受污河流水质,保障小城镇饮用水安全,在野外条件下构建DW(跌水池)、SW(深水池)和QW(浅水池)3种装置对微污染河流进行旁路复氧修复,考察不同装置对污染物的去除效果及进水污染物负荷及水力负荷对污染物去除的影响.结果表明,3种旁路复氧修复装置在较高进水ρ(DO)情况下,能够进一步提升ρ(DO),复氧作用表现为QW>DW>SW.DW、SW和QW对NH4+-N、TN、TP和CODMn的平均去除率分别为39.5%~41.8%、1.0%~25.8%、13.8%~16.4%和6.4%~8.8%.污染物出水浓度和进水负荷具有较强的线性关系(R2>0.8);随着水力负荷的降低,污染物去除效果均有所提升.一级动力学模型可以较好地模拟修复系统中水力负荷与污染物去除的关系(R2>0.9).   相似文献   
42.
三峡库区消落带草本植物碳氮磷释放及影响因素   总被引:2,自引:0,他引:2  
以三峡库区消落带优势草本植物狗牙根(Cynodon dactylon)、牛鞭草(Hemarthriaaltissima)、稗草(Echinochloacrusgalli)、狗尾草(Setariaviridis)和马唐(Digitariasanguinalis)为试验植物,在室内进行了为期60 d的淹水模拟试验,并对消落带优势草本植物淹水后TOC、TN和TP的释放特征及影响因素进行了研究. 结果表明:5种优势草本植物淹水后均可导致水中pH降低,TOC、TN和TP的Umax(最大单位累积释放量)分别为21.03~43.65、0.50~3.23和0.54~2.69 mg/g,Umax出现在淹水第15~20天,并且TOC、TN和TP的R(释放速率)差异显著;水体中微生物、水体温度和上覆水中ρ(TOC)、ρ(TN)、ρ(TP)对植物淹水后TOC、TN和TP的释放均有一定影响. 在对消落带植被调查研究的基础上,根据淹水试验植物的Umax,对蓄水后三峡库区消落带植被TOC、TN、TP的释放量进行了估算,在蓄水后20 d内,消落带植被可向水体释放大量的TOC、TN和TP,蓄水初期可能会引起库区局部水域水质恶化,影响水库的水环境安全.   相似文献   
43.
刘京  郭劲松  方芳  李哲  陈猷鹏 《环境科学研究》2011,24(12):1385-1392
为了解三峡库区磷收支情况,进行污染潜势评价,对三峡库区典型紫色土坡耕区新政小流域进行调查分析. 结果表明,新政小流域单位面积磷输入量为139.82 kg/(hm2·a),输出量为 101.69 kg/(hm2·a).肥料磷输入是新政小流域磷输入的主要来源,占磷输入总量的72.26%;人畜排泄物磷是新政小流域磷的主要输出方式,占磷输出总量的56.01%;新政小流域磷损失负荷为18.26 kg/(hm2·a),人畜排泄物损失磷是磷损失的主要形式,占磷损失总量的46.75%;磷盈余负荷为38.13 kg/(hm2·a),高于全国平均值26.1 kg/(hm2·a).坡耕地磷污染潜势呈现,磷肥的过量施用是造成污染潜势的主要原因.   相似文献   
44.
三峡库区腹心地带消落区土壤氮磷含量调查   总被引:6,自引:0,他引:6  
消落区土壤中氮磷是上覆水体营养物质的潜在来源之一。在2008年底三峡蓄水至172 m之前,采样分析了小江(澎溪河)等库区5条典型支流淹没前的消落区土壤氮磷含量分布情况。在研究样区范围内,消落区土壤全氮均值为1317±0484 mg/g,变化范围在0459~2735 mg/g,而土壤全磷均值为0676±0282 mg/g,变化范围在0314~2799 mg/g。不同的土地利用方式消落区土壤全氮含量有明显差异,耕地消落区和园林地消落区的全氮值明显高于河滩地消落区。不同流域之间氮素差异也达到极显著水平,朱衣河和大宁河流域消落区土壤氮素要明显高于其他3条支流。但是,不同土地利用方式的消落区之间全磷差异不显著,不同流域之间磷素差异也不显著。相比长江中下游一些浅水湖泊的底泥,库区消落区土壤中全氮和全磷含量水平已处于偏高状态,向上覆水体释放的风险较大。小江流域的丰乐镇和养鹿镇、朱衣河的胡家坝地区是研究范围内释放风险高的区域.  相似文献   
45.
以季铵盐阳离子表面活性剂CTMAB及阴离子表面活性剂SDS对粉末状天然沸石进行复合改性,制备得到了CTMAB/SDS改性沸石。对改性沸石及天然沸石进行红外吸收光谱及XRD衍射表征,并研究了PAEs在天然沸石和CT-MAB/SDS改性沸石上的吸附机制。结果表明,阴阳离子表面活性剂没有对层状结构的键型造成较大的影响;PAEs在天然沸石和CTMAB/SDS改性沸石上的吸附更符合表面吸附一分配作用复合模型;PAEs的表面吸附和分配作用对吸附作用的贡献主要受吸附剂中有机质含量及吸附物质大小、极性及溶解度的影响。  相似文献   
46.
应用C2H2抑制-原状土柱培养法研究了三峡库区腹地忠县境内两种不同土地利用方式和不同高程消落带土壤N2O排放及反硝化速率的变化及特征。结果表明:研究区域消落带土壤N2O排放速率和反硝化速率具有明显的时空差异,农耕区消落带土壤N2O排放速率均值为23.71±31.61g N/hm2·d,为人工植被恢复区土壤N2O排放速率均值的3.48倍,农耕区反硝化速率均值为105.51±126.60g N/hm2·d,为人工植被恢复区反硝化速率均值的5.39倍,二者反硝化速率差异显著(p0.05)。不同高程消落带土壤N2O排放速率和反硝化速率差异不显著(p0.05),但低高程消落带土壤反硝化作用相对较强。相关性分析表明,农耕区消落带N2O排放速率与土壤温度和Eh存在显著正相关(p0.05),其反硝化速率与土壤温度存在正相关关系,表明消落带土壤N2O排放和反硝化作用受土壤温度影响明显。研究区域N2O/(N2O+N2)介于0.09~0.52,表明N2为消落带土壤反硝化作用的主要产物,但N2O的排放量也不容忽视。三峡库区消落带的土地利用方式对消落带土壤N2O排放和反硝化作用有重要影响,而耕种等人类活动可显著提高消落带N2O排放量和反硝化损失量。  相似文献   
47.
用CTMAB(十六烷三甲基溴化铵)对陶粒进行改性.实验研究了陶粒改性前后对5种内分泌干扰物EDCs(美托洛尔MTP、磺胺甲噁唑SMZ、卡马西平CBZ、对氯苯氧异丁酸CA、17α-乙炔基雌二醇EE2)的吸附特性.结果表明,CTMAB改性处理对陶粒的孔结构和表面性质都有影响,有效吸附的孔径所占比例和陶粒表面极性升高;室温条件下,EDCs初始浓度和吸附剂浓度均为1 mg/L时,实验用改性陶粒和陶粒达到吸附平衡的时间基本相同,均为5 min左右;改性陶粒能提高大部分EDCs的吸附量,5种内分泌干扰物混合物一起吸附时存在竞争,其中SMZ和MTP竞争力强,CA最弱;吸附机理包括表面物理吸附和分配作用.实验研究拟为改性陶粒应用于水中痕量污染物的处理提供理论依据,支撑保障饮用水处理达标的目的.  相似文献   
48.
忻州市滹沱河主要支流生态系统健康评价   总被引:2,自引:0,他引:2  
采用河流生态健康评价体系中的水量、水质、生物、水体连通性4个指标,运用综合健康指数法分别对忻州市滹沱河4条支流进行生态健康评价。结果表明:阳武河总指标数值为34.1,呈病态状态;牧马河总指标数值为47.1,呈亚健康状态;云中河总指标数值为15.7,呈濒于崩溃状态;清水河总指标数值为75.0,呈基本健康状态。可见,该区域河流生态健康水平整体不容乐观,同时各河流具有差异性,尤其是云中河、阳武河生态修复非常迫切。  相似文献   
49.
水资源水质评价方法分析与进展   总被引:40,自引:1,他引:40  
对国内外众多的水质评价方法的特点进行了归类分析和比较研究,指出各方法的适用条件和适用范围,提出了设计合理的水质评价模式的特征要求以及今后的研究方向和发展趋势。  相似文献   
50.
典型抗生素在中国西南地区某污水处理厂中的行为和归趋   总被引:18,自引:9,他引:9  
采用固相萃取-高效液相色谱-串联质谱(SPE-HPLC-MS/MS)法调查研究了10种典型抗生素药物在中国西南地区某污水处理厂中的含量水平、去除特点及其行为特征.结果表明,10种目标抗生素均能在污水中检出,其浓度水平在ng·L-1μg·L-1之间;在脱水污泥样中同样能检测出目标抗生素的残留,含量范围在(0.92±0.18)466.76±77.46ng·g-1之间,浓度最高的是阿奇霉素(以干重计,466.76 ng·g-1).目标抗生素在进水和出水中的总质量负荷分别为1.94 mg·(d·person)-1和807.17μg·(d·person)-1.质量平衡分析结果表明,生物转化或降解是其主要去除机制,对于喹诺酮类抗生素和阿奇霉素,污泥吸附也是相关的去除途径之一(污泥吸附占进水负荷的9.35%26.96%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号