首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43678篇
  免费   398篇
  国内免费   476篇
安全科学   1096篇
废物处理   2398篇
环保管理   5640篇
综合类   6301篇
基础理论   11861篇
环境理论   8篇
污染及防治   10224篇
评价与监测   3428篇
社会与环境   3375篇
灾害及防治   221篇
  2023年   170篇
  2022年   358篇
  2021年   391篇
  2020年   242篇
  2019年   322篇
  2018年   1852篇
  2017年   1800篇
  2016年   1932篇
  2015年   746篇
  2014年   1021篇
  2013年   2943篇
  2012年   1611篇
  2011年   2778篇
  2010年   1914篇
  2009年   1858篇
  2008年   2402篇
  2007年   2632篇
  2006年   1418篇
  2005年   1271篇
  2004年   1252篇
  2003年   1224篇
  2002年   1199篇
  2001年   1338篇
  2000年   933篇
  1999年   564篇
  1998年   430篇
  1997年   445篇
  1996年   479篇
  1995年   552篇
  1994年   460篇
  1993年   406篇
  1992年   439篇
  1991年   419篇
  1990年   385篇
  1989年   374篇
  1988年   341篇
  1987年   293篇
  1986年   284篇
  1985年   297篇
  1984年   324篇
  1983年   310篇
  1982年   312篇
  1981年   266篇
  1980年   204篇
  1979年   220篇
  1978年   188篇
  1977年   161篇
  1975年   165篇
  1973年   198篇
  1972年   183篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
Photoactive aluminum doped ZnO(AlZnO) was synthesized by sol-gel method.After that,AlZnO photocatalyst was deposited on five carbon-based materials(CBMs) using ultrasonic route followed by solid-state mixing using ball mill.The CBMs used were poly aniline(PANI),carbon nitride(CN),carbon nanotubes(CNT),graphene(G),and carbon nanofibers(CNF).The crystal phases,elemental compositions,morphological,and optical properties of the AlZnO@CBMs composites were investigated.Experimental results revealed that two of AlZnO@CBMs composites exhibited superior bleaching efficiency(100% removal) and photocatalytic stability(three cycles) for 50 μmol/L Methylene Blue(MB) contaminated water after 60 min irradiation in visible light at pH 6.5,0.7% H_2O_2,and 5 g/L inorganic salts.Under optimum conditions,AlZnO@CBMs nanocomposites were employed for the treatment of mixed dyestuffs composed of MB,Methyl Orange(MO),Astrazone Blue FRR(BB 69),and Rhodamine B(RhB) dyes under dark,ultraviolet,visible,and direct sunlight.For mixed dyestuffs,the AlZnO@G achieved the highest dye sorption capacity(60.91 μmol dye stuffs/g) with kinetic rate 8.22 × 10~(-3) min~(-1) in 90 min via multi-layer physisorption(Freundlich isotherm) on graphene sheet.In additions,AlZnO@CN offered the highest photo-kinetic rate(K_(photo)) of~54.1 × 10~(-3) min~(-1)(93.8% after 60 min) under direct sunlight.Furthermore,the selective radical trapping experiment confirmed that the holes and oxidative superoxide radicals are crucial on dyes photodegradation pathway.Owing to their superior performance,AlZnO@G and AlZnO@CN nanocomposites can offer an effective in-situ solar-assisted adsorption/photocatalytic remediation of textile wastewater effluents.  相似文献   
163.
Advanced oxidation technologies are a friendly environmental approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous WO_3 and WO_3-graphene oxide(GO) nanocomposites has been performed through the sol–gel method. Then, platinum(Pt) nanoparticles were deposited onto the WO_3 and WO_3-GO nanocomposite through photochemical reduction to produce mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites. X-ray diffraction(XRD) findings exhibit a formation of monoclinic and triclinic WO_3 phases. Transmission Electron Microscope(TEM) images of Pt/WO_3-GO nanocomposites exhibited that WO_3 nanoparticles are obviously agglomerated and the particle sizes of Pt and WO_3 are ~ 10 nm and 20–50 nm, respectively. The mesoporous Pt/WO_3 and Pt/WO_3-GO nanocomposites were assessed for photocatalytic degradation of Methylene Blue(MB) as a probe molecule under visible light illumination.The findings showed that mesoporous Pt/WO_3, WO_3-GO and Pt/WO_3-GO nanocomposites exhibited much higher photocatalytic efficiencies than the pure WO_3. The photodegradation rates by mesoporous Pt/WO_3-GO nanocomposites are 3, 2 and 1.15 times greater than those by mesoporous WO_3, WO_3-GO, and Pt/WO_3, respectively. The key factors of the enhanced photocatalytic performance of Pt/WO_3-GO nanocomposites could be explained by the highly freedom electron transfer through the synergetic effect between WO_3 and GO sheets, in addition to the Pt nanoparticles that act as active sites for O2 reduction, which suppresses the electron hole pair recombination in the Pt/WO_3-GO nanocomposites.  相似文献   
164.
Probleme der elektronenmikroskopischen Autoradiographie   总被引:1,自引:0,他引:1  
  相似文献   
165.
166.
167.
168.
169.
Diapause embryos in the neustonic copepodAnomalocera patersoni   总被引:2,自引:0,他引:2  
The neustonic copepodAnomalocera patersoni Templeton, collected from the Gulf of Naples from January to May 1988, laid subitaneous and diapause eggs that were of equal size and dark and smooth in appearance. In January and February, most eggs were subitaneous and hatched within 2 to 3 d at room temperature. Conspicuous numbers of diapause eggs were first obtained in February when several clutches contained a second egg type which did not hatch in a subitaneous manner. By March and April, most clutches contained only diapause eggs. Transmission electron microscope studies of subitaneous and diapause eggs revealed striking morphological differences. Subitaneous eggs had a thin vitelline coat covering the plasma membrane, whereas diapause eggs were enveloped by a complex four-layer structure which is assembled after spawning and which probably serves as a protective shell during dormancy. No major morphological differences were discernible in the oogenic cycle of females spawning either of the two egg types. Diapause eggs were shown to be embryos in early stages of development, and segmentation of these embryos was arrested for the entire 6-mo period of investigation. Diapause eggs hatched after 7 mo of dormancy.  相似文献   
170.
We undertook a detailed analysis of the lipid composition ofSolemya velum (Say), a bivalve containing endosymbiotic chemoautotrophic bacteria, in order to determine the presence of lipid biomarkers of endosymbiont activity. The symbiont-free clamMya arenaria (L.) and the sulfur-oxidizing bacteriumThiomicrospira crunogena (Jannasch et al.) were analyzed for comparative purposes. The 13C ratios of the fatty acids and sterols were also measured to elucidate potential carbon sources for the lipids of each bivalve species. Both fatty acid and sterol composition differed markedly between the two bivalves. The lipids ofS. velum were characterized by large amounts of 18: 17 (cis-vaccenic acid), 16:0, and 16 : 17 fatty acids, and low concentrations of the highly unsaturated plant-derived fatty acids characteristic of most marine bivalves. Cholest-5-en-3-ol (cholesterol) accounted for greater than 95% of the sterols inS. velum. In contrast,M. arenaria had fatty acid and sterol compositions similar to typical marine bivalves and was characterized by large amounts of the highly unsaturated fatty acids 20 : 53 and 22 : 63 and a variety of plant-derived sterols. The fatty acids ofT. crunogena were similar to those ofS. velum and were dominated by 18:17, 16:0 and 16:17 fatty acids. Thecis-vaccenic acid found inS. velum is almost certainly symbiontderived and serves as a potential biomarker for symbiontlipid incorporation by the host. The high concentrations ofcis-vaccenic acid (up to 35% of the total fatty acid content) in both symbiont-containing and symbiont-free tissues ofS. velum demonstrate the importance of the endosymbionts in the lipid metabolism of this bivalve. The presence ofcis-vaccenic acid in all the major lipid classes ofS. velum demonstrates both incorporation and utilization of this compound. The 13C ratios of the fatty acids and sterols ofS. velum were significantly lighter (–38.4 to –45.3) than those ofM. arenaria (–23.8 to – 24.2) and were similar to the values found for the fatty acids ofT. crunogena (–45); this suggests that the lipids ofS. velum are either derived directly from the endosymbionts or are synthesized using endosymbiontderived carbon.Woods Hole Oceanographic Institution Contribution No. 7356Please address all correspondence and reprint requests to Dr Conway at her present address: Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号