首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38897篇
  免费   360篇
  国内免费   248篇
安全科学   1019篇
废物处理   2166篇
环保管理   5099篇
综合类   5377篇
基础理论   10642篇
环境理论   12篇
污染及防治   9009篇
评价与监测   3070篇
社会与环境   2928篇
灾害及防治   183篇
  2023年   175篇
  2022年   298篇
  2021年   360篇
  2020年   228篇
  2019年   260篇
  2018年   1799篇
  2017年   1725篇
  2016年   1845篇
  2015年   653篇
  2014年   903篇
  2013年   2524篇
  2012年   1463篇
  2011年   2564篇
  2010年   1756篇
  2009年   1677篇
  2008年   2187篇
  2007年   2418篇
  2006年   1219篇
  2005年   1106篇
  2004年   1071篇
  2003年   1051篇
  2002年   1024篇
  2001年   1104篇
  2000年   781篇
  1999年   484篇
  1998年   372篇
  1997年   383篇
  1996年   401篇
  1995年   466篇
  1994年   394篇
  1993年   343篇
  1992年   376篇
  1991年   355篇
  1990年   326篇
  1989年   322篇
  1988年   295篇
  1987年   241篇
  1986年   247篇
  1985年   247篇
  1984年   278篇
  1983年   262篇
  1982年   268篇
  1981年   221篇
  1980年   165篇
  1979年   181篇
  1978年   162篇
  1977年   133篇
  1975年   137篇
  1973年   167篇
  1972年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
351.
Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurological conditions affecting a number of mammals, including sheep and goats (scrapie), cows (BSE), and humans (Creutzfeldt-Jakob disease). The diseases are widely believed to be caused by the misfolding of the normal prion protein to a pathological isoform, which is thought to act as an infectious agent. Outbreaks of the disease are commonly attributed to contaminated feed and genetic susceptibility. However, the implication of copper and manganese in the pathology of the disease, and its apparent geographical clustering, have prompted suggestions of a link with trace elements in the environment. Nevertheless, studies of soils at regional scales have failed to provide evidence of an environmental risk factor. This study uses geostatistical techniques to investigate the correlations between the distribution of TSE prevalence and soil geochemical variables across the UK according to different spatial scales. A similar spatial pattern in scrapie and BSE occurrence is identified, which may be linked with increasing pH and total organic carbon, and decreasing iodine concentration. However, the pattern also resembles that of the density of dairy farming. Nevertheless, despite the low spatial resolution of the TSE data available for this study, the fact that significant correlations are detected indicates there is a possibility of a link between soil geochemistry, scrapie, and BSE. It is suggested that further investigations of the prevalence of TSE and environmental exposure to trace metals should take into account the factors affecting their bioavailability.  相似文献   
352.
Arsenite [As(III)]-oxidizing bacteria play important roles in reducing arsenic [As] toxicity and mobility in As-contaminated areas. As-resistant bacteria were isolated from the soils of two abandoned mines in the Republic of Korea. The isolated bacteria showed relatively high resistances to As(III) up to 26 mM. The PCR-based 16S rRNA analysis revealed that the isolated As-resistant bacteria were close relatives to Serratia marcescensa, Pseudomonas putida, Pantoea agglomerans, and Alcaligenes sp. Among the five As-resistant bacterial isolates, Alcaligenes sp. strain RS-19 showed the highest As(III)-oxidizing activity in batch tests, completely oxidizing 1 mM of As(III) to As(V) within 40 h during heterotrophic growth. This study suggests that the indigenous bacteria have evolved to retain the ability to resist toxic As in the As-contaminated environments and moreover to convert the species to a less toxic form [e.g., from As(III) to As(V)] and also contribute the biogeochemical cycling of As by being involved in speciation of As.  相似文献   
353.
At specific locations within the Baltic Sea, thermoclines and haloclines can create rapid spatial and temporal changes in temperature (T) and salinity (S) exceeding 10°C and 9 psu with seasonal ranges in temperature exceeding 20°C. These wide ranges in abiotic factors affect the distribution and abundance of Baltic Sea copepods via species-specific, physiological-based impacts on vital rates. In this laboratory study, we characterized the influence of T and S on aspects of reproductive success and naupliar survival of a southwestern Baltic population of Temora longicornis (Copepoda: Calanoida). First, using ad libitum feeding conditions, we measured egg production (EP, no. of eggs female−1 day−1) at 12 different temperatures between 2.5 and 24°C, observing the highest mean EP at 16.9°C (12 eggs female−1 day−1). Next, the effect of S on EP and hatching success (HS, %) was quantified at 12°C for cohorts that had been acclimated to either 8, 14, 20 or 26 psu and tested at each of five salinities (8, 14, 20, 26 and 32 psu). The mean EP was highest for (and maximum EP similar among) 14, 20 and 26 psu cohorts when tested at their acclimation salinity whereas EP was lower at other salinities. For adults reared at 8 psu, a commonly encountered salinity in Baltic surface waters, EP was relatively low at all test salinities—a pattern indicative of osmotic stress. When incubated at 12°C and 15 different salinities between 0 and 34 psu, HS increased asymptotically with increasing S and was maximal (82.6–84.3%) between 24 and 26 psu. However, HS did depend upon the adult acclimation salinity. Finally, the 48-h survival of nauplii hatched and reared at 14 psu at one of six different temperatures (10, 12, 14, 16, 18 and 20°C) was measured after exposure to a novel salinity (either 7 or 20 psu). Upon exposure to 7 psu, 48-h naupliar mortality increased with increasing temperature, ranging from 26.7% at 10°C to 63.2% at 20°C. In contrast, after exposure to 20 psu, mortality was relatively low at all temperatures (1.7% at 10°C and ≤26.7% for all other temperatures). An intra-specific comparison of EP for three different T. longicornis populations revealed markedly different temperature optima and clearly demonstrated the negative impact of brackish (Baltic) salinities. Our results provide estimates of reproductive success and early survival of T. longicornis to the wide ranges of temperatures and salinities that will aid ongoing biophysical modeling examining climate impacts on this species within the Baltic Sea.  相似文献   
354.
Bryaninops, Gobiodon, Paragobiodon and Pleurosicya are the most abundant genera of coral-associated gobies. These genera are adapted to live among coral, while other small reef gobies (e.g., the genus Eviota) show no obligate association with this living substrate. Thirteen coral-associated species and two Eviota species were sampled from different regions of the Red Sea, along with four populations/species of Gobiodon from the Indian and western Pacific Oceans. A molecular phylogenetic analysis was performed using partial sequences of 12S rRNA, 16S rRNA and cytochrome b mitochondrial genes, 1,199 base pairs in total. Several clades were consistently resolved in neighbor joining-, maximum parsimony-, maximum likelihood and Bayesian analyses. While each of the four genera Gobiodon, Paragobiodon, Bryaninops and Pleurosicya proved to be monophyletic, their relative position in the phylogeny did not support an emergence of coral-associated gobiids as a monophyletic assemblage. Instead, two separate monophyletic sub-groups were discovered, the first comprising Gobiodon and Paragobiodon, and the second Bryaninops and Pleurosicya. Our molecular phylogenetic examinations also revealed one unassigned species of Gobiodon from the Maldives as a distinct species and confirmed three putative and yet unassigned species from the Red Sea. Moreover, the uniformly black colored species of Gobiodon are not monophyletic but have evolved independently within two distinct species groups. Genetic distances were large in particular within Pleurosicya and Eviota. Estimated divergence times suggest that coral-associated gobies have diversified in parallel to their preferred host corals. In particular, divergence times of Gobiodon species closely match those estimated for their typical host coral genus Acropora.  相似文献   
355.
We investigated the constraints on sulfide uptake by bacterial ectosymbionts on the marine peritrich ciliate Zoothamnium niveum by a combination of experimental and numerical methods. Protists with symbionts were collected on large blocks of mangrove-peat. The blocks were placed in a flow cell with flow adjusted to in situ velocity. The water motion around the colonies was then characterized by particle tracking velocimetry. This shows that the feather-shaped colony of Z. niveum generates a unidirectional flow of seawater through the colony with no recirculation. The source of the feeding current was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical modeling shows that sulfide oxidizing bacteria on the surfaces of Z. niveum can sustain 100-times higher sulfide uptake than bacteria on flat surfaces, such as microbial mats. The study demonstrates that the filter feeding zooids of Z. niveum are preadapted to be prime habitats for sulfide oxidizing bacteria due to Z. niveum’s habitat preference and due to the feeding current. Z. niveum is capable of exploiting low concentrations of sulfide in near norm-oxic seawater. This links its otherwise dissimilar habitats and makes it functionally similar to invertebrates with thiotrophic symbionts in filtering organs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
356.
Owing to the necessity of delivering food to offspring at colonies, breeding seabirds are highly constrained in their foraging options. To minimize constraints imposed by central-place foraging and to optimize foraging behavior, many species exhibit flexible foraging tactics. Here we document the behavioral flexibility of pursuit-diving common murres Uria aalge when foraging on female capelin Mallotus villosus in the northwest Atlantic. Quite unexpectedly, being visual foragers, we found that common murres dived throughout the day and night. Twenty-one percent of recorded dives (n = 272 of 1,308 dives) were deep (≥50 m; maximum depth = 152 m, maximum duration = 212 s), bringing murres into sub-0°C water in the Cold Intermediate Layer (CIL; 40–180 m) of the Labrador Current. Deep dives occurred almost exclusively during the day when murres would have encountered spatially predictable aggregations of capelin between 100 and 150 m in the water column. Temperatures within the CIL shaped trophic interactions and involved trade-offs for both predators and prey. Sub-0°C temperatures limit a fish’s ability to escape from endothermic predators by reducing burst/escape speeds and also lengthening the time needed to recover from burst-type activity. Thus, while deep diving may be energetically costly, it likely increases certainty of prey capture. Decreased murre foraging efficiency at night (indicated by an increase in the number of dives per bout) reflects both lower light conditions and changing prey behavior, as capelin migrate to warmer surface waters at night where their potential to escape from avian predators could increase.  相似文献   
357.
Accurate prediction of the biodiversity–ecosystem functioning relationship requires adequate understanding of the interactions among species in a community. Effects of species diversity on ecosystem functioning are usually considered more pronounced with increasing functional dissimilarity, although species within functional groups may also perform non-identical functions and interact with each other. Here we present results of a laboratory experimental study aimed at elucidating whether interspecific interactions among species within a single nematode trophic group, bacterivores, (1) affect population development and community structure, and (2) depend on food availability. We studied the population growth of Rhabditis (Pellioditis) marina, a rhabditid nematode known to favour very high food densities when in monoculture, and of Diplolaimelloides meyli and D. oschei, congeneric Monhysteridae known to perform better in monocultures at intermediate food availability. Both Diplolaimelloides species showed significantly different patterns of food-density dependence in combination culture compared to monoculture. At very high food availability, the rhabditid nematode facilitated growth of both monhysterid species, probably as a result of down-regulation of bacterial density. At the lowest food availabilities, the presence of even low numbers of monhysterid nematodes lead to exclusion of the rhabditid, which at such low food availability has a very inefficient food uptake. At intermediate food availabilities, abundances of both Diplolaimelloides species were strongly depressed in the combination culture, as a result of food depletion by the rhabditid, indirect inhibitory interactions between the two congeneric species, or both. The complexity of the species interactions render predictions on the outcome and functional consequences of changes in within-trophic-group diversity highly problematic.  相似文献   
358.
Size advantage in male–male competition over mates, combined with male preference over large females, is a common feature that can drive to size assortative mating and, eventually, sexual selection. In crabs, appendage autotomy can affect assortative mating and opportunity for sexual selection by affecting size advantage in mating contests. In this work, we evaluate the effect of size and appendage autotomy in generating assortative mating in the mud crab Cyrtograpsus angulatus. Field observations of guarding pairs in two different populations show a positive correlation between carapace width of males and females in both the populations. In one of the populations, incidence of appendage autotomy was low and the variability in the size of reproductive males was lower than the variability in the size of randomly collected males (i.e. only larger males were successful in getting a female), whereas there was no differences in the other population (i.e. most male sizes were successful) where the incidence of appendage autotomy was very high, indicating that the importance of size is higher when the incidence of autotomy is low. In this context, experiments (in both populations) show that, in contests for a female, larger males outcompete smaller ones only when they had intact appendages. When males had missing chelipeds, winning or loosing against smaller males was random. This may lead to a decrease in the importance of male size in populations with high incidence of cheliped autotomy, affecting assortative mating and opportunity for selection and, thus, affecting selective pressures.  相似文献   
359.
In social insects, queens are likely to “honestly” inform their nestmates of their presence and fertility status through pheromonal communication. Cuticular hydrocarbons (CHCs) have been reported to be effective nestmate discriminators and strongly suspected to act as fertility signals, at least in some species. The use of the same chemical bouquet (i.e., the CHC profile) to convey two fundamentally different information seems puzzling. However, a recent threshold model proposes a hierarchy in the discriminating processes, i.e., fertility signals can only be perceived if nestmate recognition has been reached (Le Conte and Hefetz, Annu Rev Entomol 53:523–542, 2008). Here, we developed a simple behavioral bioassay based on chemical recruitment toward a queen placed outside the nest in two dolichoderine ants (Linepithema humile and Tapinoma erraticum), which allowed us to investigate the interplay between fertility signaling and colonial recognition. Using queen corpses of various origins (nestmates or aliens) and physiological states (fertile or infertile; mated or unmated), we demonstrated that nestmate recognition cues clearly override fertility signals under our experimental conditions. Indeed, while nestmate infertile queens were largely ignored by the workers, nestmate fertile queens (mated or not) induced worker recruitment, whereas alien fertile queens did not and were aggressed by the workers.  相似文献   
360.
Exotic species invasion is widely considered to affect ecosystem structure and function. Yet, few contemporary approaches can assess the effects of exotic species invasion at such an inclusive level. Our research presents one of the first attempts to examine the effects of an exotic species at the ecosystem level in a quantifiable manner. We used ecological network analysis (ENA) and a social network analysis (SNA) method called cohesion analysis to examine the effect of zebra mussel (Dreissena polymorpha) invasion on the Oneida Lake, New York, USA, food web. We used ENA to quantify ecosystem function through an analysis of food web carbon transfer that explicitly incorporated flow over all food web paths (direct and indirect). The cohesion analysis assessed ecosystem structure through an organization of food web members into subgroups of strongly interacting predators and prey. Our analysis detected effects of zebra mussel invasion throughout the entire Oneida Lake food web, including changes in trophic flow efficiency (i.e., carbon flow among trophic levels) and alterations of food web organization (i.e., paths of carbon flow) and ecosystem activity (i.e., total carbon flow). ENA indicated that zebra mussels altered food web function by shunting carbon from pelagic to benthic pathways, increasing dissipative flow loss, and decreasing ecosystem activity. SNA revealed the strength of zebra mussel perturbation as evidenced by a reorganization of food web subgroup structure, with a decrease in importance of pelagic pathways, a concomitant rise of benthic pathways, and a reorganization of interactions between top predator fish. Together, these analyses allowed for a holistic understanding of the effects of zebra mussel invasion on the Oneida Lake food web.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号