首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   22篇
  国内免费   10篇
安全科学   46篇
废物处理   33篇
环保管理   171篇
综合类   89篇
基础理论   228篇
环境理论   1篇
污染及防治   225篇
评价与监测   54篇
社会与环境   20篇
灾害及防治   30篇
  2023年   5篇
  2022年   16篇
  2021年   14篇
  2020年   23篇
  2019年   18篇
  2018年   24篇
  2017年   24篇
  2016年   27篇
  2015年   23篇
  2014年   35篇
  2013年   72篇
  2012年   31篇
  2011年   52篇
  2010年   35篇
  2009年   40篇
  2008年   42篇
  2007年   40篇
  2006年   35篇
  2005年   29篇
  2004年   28篇
  2003年   23篇
  2002年   35篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   11篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   13篇
  1993年   13篇
  1992年   3篇
  1991年   8篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1986年   10篇
  1985年   7篇
  1984年   6篇
  1983年   5篇
  1982年   11篇
  1981年   8篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   7篇
  1974年   3篇
  1973年   3篇
  1971年   3篇
  1955年   2篇
排序方式: 共有897条查询结果,搜索用时 31 毫秒
21.
There is a growing demand for alternatives to Sweden’s current dominant silvicultural system, driven by a desire to raise biomass production, meet environmental goals and mitigate climate change. However, moving towards diversified forest management that deviates from well established silvicultural practices carries many uncertainties and risks. Adaptive management is often suggested as an effective means of managing in the context of such complexities. Yet there has been scepticism over its appropriateness in cases characterised by large spatial extents, extended temporal scales and complex land ownership—characteristics typical of Swedish forestry. Drawing on published research, including a new paradigm for adaptive management, we indicate how common pitfalls can be avoided during implementation. We indicate the investment, infrastructure, and considerations necessary to benefit from adaptive management. In doing so, we show how this approach could offer a pragmatic operational model for managing the uncertainties, risks and obstacles associated with new silvicultural systems and the challenges facing Swedish forestry.  相似文献   
22.
Burning natural gas in power plants may emit radon (222Rn) into the atmosphere. On the University Park campus of The Pennsylvania State University, atmospheric radon enhancements were measured and modeled in the vicinity of their two power plants. The three-part study first involved measuring ambient outdoor radon concentrations from August 2014 through January 2015 at four sites upwind and downwind of the power plants at distances ranging from 80 m to 310 m. For each plant, one site served as a background site, while three other sites measured radon concentration enhancements downwind. Second, the radon content of natural gas flowing into the power plant was measured, and third, a plume dispersion model was used to predict the radon concentrations downwind of the power plants. These predictions are compared to the measured downwind enhancements in radon to determine whether the observed radon concentration enhancements could be attributed to the power plants’ emissions. Atmospheric radon concentrations were consistently low as compared to the EPA action level of 148 Bq m?3, averaging 34.5 ± 2.7 Bq m?3 around the East Campus Steam Plant (ECSP) and 31.6 ± 2.7 Bq m?3 around the West Campus Steam Plant (WCSP). Significant concentrations of radon, ranging from 516 to 1,240 Bq m?3, were detected in the natural gas. The measured enhancements downwind of the ECSP averaged 6.2 Bq m?3 compared to modeled enhancements of 0.08 Bq m?3. Measured enhancements around the WCSP averaged ?0.2 Bq m?3 compared to the modeled enhancements of 0.05 Bq m?3, which were not significant compared to observational error. The comparison of the measured to modeled downwind radon enhancements shows no correlation over time. The measurements of radon levels in the vicinity of the power plants appear to be unaffected by the emissions from the power plants.

Implications: Radon measurements at sites surrounding power plants that utilize natural gas did not indicate that the radon concentrations originated from the plants’ emissions. There were elevated radon concentrations in the natural gas supply flowing into the power plants, but combustion dilution puts the concentration below EPA action levels coming out of the stack, so no hazardous levels were expected downwind. Power plant combustion of natural gas is not likely to pose a radiation health hazard unless very different gas radon concentrations or combustion dilution ratios are encountered.  相似文献   
23.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
24.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
25.
Electroosmotic dewatering of dredged sediments: bench-scale investigation   总被引:1,自引:0,他引:1  
The Indiana Harbor (Indiana, USA) has not been dredged since 1972 due to lack of a suitable disposal site for dredged sediment. As a result of this, over a million cubic yards of highly contaminated sediment has accumulated in the harbor. Recently, the United States Army Corps of Engineers (USACE) has selected a site for the confined disposal facility (CDF) and is in the process of designing it. Although dredging can be accomplished rapidly, the disposal in the CDF has to be done slowly to allow adequate time for consolidation to occur. The sediment possesses very high moisture content and very low hydraulic conductivity, which cause consolidation to occur slowly. Consolidation of the sediment is essential in order to achieve adequate shear strength of sediments and also to provide enough air space to accommodate the large amount of sediment that requires disposal. Currently, it has been estimated that if a one 3-foot (0.9-m) thick layer of sediment was disposed of at the CDF annually, it would take approximately 10 years to dispose of all the sediment that is to be dredged from the Indiana Harbor. This study investigated the feasibility of using an electroosmotic dewatering technology to accelerate dewatering and consolidation of sediment, thereby allowing more rapid disposal of sediment into the CDF. Electroosmotic dewatering essentially involves applying a small electric potential across the sediment layer, thereby inducing rapid flow as a result of physico-chemical and electrochemical processes. A series of bench-scale electrokinetic experiments were conducted on actual dredged sediment samples from the Indiana Harbor to investigate dewatering rates caused by gravity alone, dewatering rates caused by gravity and electric potential, and the effects of the addition of polymer flocculants on dewatering of the sediments. The results showed that electroosmotic dewatering under an applied electric potential of 1.0VDC/cm could increase the rate of dewatering and consolidation by an order of magnitude as compared to gravity drainage alone. Amending the sediment with polymers at low concentrations (0.5-1% by dry weight) will enhance this dewatering process; however, the optimal polymer concentration and the cost-effectiveness of using polymers should be investigated further.  相似文献   
26.
27.
28.
Ambio - The choice of tree species used in production forests matters for biodiversity and ecosystem services. In Sweden, damage to young production forests by large browsing herbivores is helping...  相似文献   
29.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1065-1066
Ambio - In the original published article, the sentence “Nevertheless, semi-natural forest remnants continue to be harvested and fragmented (Svensson et al. 2018; Jonsson et al. 2019), and...  相似文献   
30.
Elution of organic compounds from resin-based dental fillings during their application in the human mouth environment may have a potential impact on the human health. Ethanol, water and other solvents very often present in the human mouth have the ability to penetrate dental fillings placed in the human tooth. Penetration of liquids into the tooth may lead to the liberation of unreacted dental filling ingredients or their degradation products. Determination of these compounds is necessary for better knowledge from possible harmful effects caused by dental fillings. The aim of this study was the isolation and identification of compounds released from resin-modified glass-ionomer cements (RMGICs), resin-based dental materials applied in dentistry. Compounds were extracted from fillings by using four solvents (40% ethanol, water, 1% acetic acid and artificial saliva). Liquid samples containing eluted compounds were then extracted, evaporated and analyzed by using of HPLC-MS (high-performance liquid chromatography-mass spectrometry) and HPLC-DAD (high-performance liquid chromatography-diode array detection) techniques. Almost thirty components (monomers and additives) of RMGICs were identified. The main identified extractables were: Bis-GMA (bisphenol A glycidyl dimethacrylate), Bis-EMA (ethoxylated bisphenol A dimethacrylate), UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate) as monomers and diphenyliodonium chloride, camphorquinone (initiators), BHA (inhibitor), 4-(dimethylamino) ethyl benzoate (co-initiator) as additives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号