首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   673篇
  免费   5篇
  国内免费   18篇
安全科学   18篇
废物处理   47篇
环保管理   62篇
综合类   39篇
基础理论   101篇
污染及防治   260篇
评价与监测   123篇
社会与环境   41篇
灾害及防治   5篇
  2023年   15篇
  2022年   65篇
  2021年   67篇
  2020年   18篇
  2019年   27篇
  2018年   32篇
  2017年   35篇
  2016年   37篇
  2015年   32篇
  2014年   32篇
  2013年   83篇
  2012年   24篇
  2011年   45篇
  2010年   35篇
  2009年   22篇
  2008年   21篇
  2007年   14篇
  2006年   14篇
  2005年   11篇
  2004年   10篇
  2003年   5篇
  2002年   4篇
  2001年   10篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有696条查询结果,搜索用时 0 毫秒
101.
Iran is the second largest stockholder of construction stones with 10 % of world production ;and there are more than 4000 stone cutting and fabrication industries (SCFIs). In the processing of raw stones, a considerable part of stone is turned into waste. Generated wastes include excess parts of different stones and sludge. The present paper reviews the state of SCFIs waste management using multiple data sources including site, analysis of effluent and sludge samples, and conducting interviews with people who are involved in 286 SCFIs in Qom and Tabriz. The results revealed that currently almost 35 to 52.5 % of raw stones were converted to solid wastes depending on stone cutting and processing methods, type of stones and their quality, which seemed a high percentage. Also, the effluents between 0.8 and 2.8 m3 were generated per ton of processed stone. Based on the analysis of heavy metals with atomic absorption spectroscopy, sludge samples contained a considerable amount of Pb, Cu, Cr, and Cd. It was also found that the lack of specific recycling, reuse and disposal programs and suitable supervision has led to uncontrolled disposal of stone wastes and sludge in different areas. However, there are good opportunities for reuse and recycling of the SCFIs wastes.  相似文献   
102.
In this study, bio-thermoset from epoxidized soybean oil (ESO) was prepared in the presence of methylhexahydrophthalic anhydride curing agent and 2-ethyl-4-methylimidazole catalyst. The crosslink densities of the synthesized ESO are ranged from 0.109 × 10?3 to 0.308 × 10?3 mol/cm3. The ESO bio-thermosets were exposed to the soil-burial test for 8 months. Weight change and morphology of the degraded ESO specimens were assessed. It was found that the weight loss of ESO was governed by the materials compositions, crosslink density and the soil-burial exposure time. The 3 mm thickness ESO bio-thermosets with crosslink density of 0.109 × 10?3 mol/cm3 had fully biodegraded after soil-burial for 6 months. In addition, 16S rDNA sequencing was carried out to identify the soil microorganisms. It was suggested that Comamonas sp., Bacillus sp., Streptomyces sp. and Acinetobacter sp. are the possible soil microbes that degrade the ESO bio-thermosets in the compost soil environment.  相似文献   
103.
Poisonous lead (Pb), among heavy metals, is a potential pollutant that readily accumulates in soils and thus adversely affects physiological processes in plants. We have evaluated how exogenous H2S affects cotton plant physiological attributes and Pb uptake under Pb stress thereby understanding the role of H2S in physiological processes in plants. Two concentrations (0 and 200 μM) of H2S donor sodium hydrosulfide (NaHS) were experimented on cotton plants under Pb stress (0, 50, and 100 μM). Results have shown that Pb stress decreased plant growth, chlorophyll contents, SPAD value, photosynthesis, antioxidant activity. On the other hand, Pb stress increased the level of malondialdehyde (MDA), electrolyte leakage (EL), and production of H2O2 and uptake of Pb contents in all three parts of plant, viz. root, stem, and leaf. Application of H2S slightly increased plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity as compared to control. Hydrogen sulfide supply alleviated the toxic effects of lead on plant growth, chlorophyll contents, SPAD value, photosynthesis, and antioxidant activity in cotton plants. Hydrogen sulfide also reduced MDA, EL, and production of H2O2 and endogenous Pb levels in the three mentioned plant parts. On the basis of our results, we conclude that H2S has promotive effects which could improve plant survival under Pb stress.  相似文献   
104.
This in vitro study investigates the impact of silica-coated magnetite particles (Fe3O4@SiO2/SiDTC, hereafter called IONP; 2.5 mg L?1) and its interference with co-exposure to persistent contaminant (mercury, Hg; 50 μg L?1) during 0, 2, 4, 8, 16, 24, 48, and 72 h on European eel (Anguilla anguilla) brain and evaluates the significance of the glutathione (GSH) redox system in this context. The extent of damage (membrane lipid peroxidation, measured as thiobarbituric acid reactive substances, TBARS; protein oxidation, measured as reactive carbonyls, RCs) decreased with increasing period of exposure to IONP or IONP + Hg which was accompanied with differential responses of glutathione redox system major components (glutathione reductase, GR; glutathione peroxidase, GPX; total GSH, TGSH). The occurrence of antagonism between IONP and Hg impacts was evident at late hour (72 h), where significantly decreased TBARS and RC levels and GR and glutathione sulfo-transferase (GST) activity imply the positive effect of IONP + Hg concomitant exposure against Hg-accrued negative impacts [vs. early (2 h) hour of exposure]. A period of exposure-dependent IONP alone and IONP + Hg joint exposure-accrued impact was perceptible. Additionally, increased susceptibility of the GSH redox system to increased period of exposure to Hg was depicted, where insufficiency of elevated GR for the maintenance of TGSH required for membrane lipid and cellular protein protection was displayed. Overall, a fine-tuning among brain glutathione redox system components was revealed controlling IONP + Hg interactive impacts successfully.  相似文献   
105.
Two field experiments were conducted at the Waimanalo research station on the island of O'ahu, Hawaii to study the effect of chicken (CM) and dairy (DM) manures on biomass and nutrient concentration in sweet corn roots and shoots. Sweet corn (super sweet 10, Zea Mays L. subsp. mays) was grown for two consecutive growing seasons under four rates of application (0, 168, 337, and 672 kg ha? 1 total N equivalent) and one time (OTA) or two time (TTA) applications of organic manure types and rates. There were significant effects of types, rates, and number of manure applications on dry biomass and macro- and micro-nutrient concentration in roots and shoots tissues. Results of root tissue indicated a significant accumulation of N and C under CM and DM treatments compared with the control treatment. Manure application rates significantly increased the accumulation of N and C in root tissue. Dry weight of roots and shoots and both macro- and micro-nutrient contents in the plant tissues significantly increased under TTA treatment compared with OTA treatment. There was a significant correlation (r2 = 0.46 to 0.81) between root biomass, macro-, and micro-nutrient contents during both growing seasons. The results of the study indicates that amending soils with CM at the highest application rate provided the best crop performance in terms of root and shoot biomass, crop N, C, and other macro- and micro-nutrients.  相似文献   
106.
ABSTRACT

Although the appropriate supply of nutrients has been extensively researched, more information is required on the effects of nutrients in treating gaseous volatile organic compounds (VOCs) in biofiltration. In this study, the effects of phosphorous and trace metals on gaseous toluene and methyl ethyl ketone (MEK) removal were investigated. The transfer of nutrients from the irrigation liquid to the packed bed, and the consumption and holding amount of nutrients in the packing material were observed during biofiltration. Under conditions of 20–24 s of empty bed residence time, MEK removal was 95% or more in all conditions of the biofiltration reactors, whereas toluene removal was affected by the operating conditions of the reactors. Consumption ratio of phosphorus to carbon was from 1.7 × 10?4 to 1.1 × 10?3 in the steady state of VOC removal under the conditions of this study. When gaseous VOC treatment was restarted after nine days of shutdown, a significant decline in toluene removal was observed by the reactor in which phosphorus supply was approximately one fifth of the amount in another reactor. Two types of irrigation systems, soaking and spraying, were compared and soaking irrigation achieved a more even distribution of nutrients held inside the packed bed. Soaking irrigation was expected to lead to higher VOC removal capacity by this distribution effect of nutrients, but toluene removal in the reactor with this irrigation was lower than that in the reactor with spraying irrigation. One of the possible reasons for this was the inhibition of nutrients transfer in the bottom part of the reactor. The trend of transfer in all ingredients from the irrigation liquid to the packed bed was synchronized on the whole; however, this transfer relatively tended to be high in nitrate and sodium and low in ammonium and phosphate.

Implications: A major concern about using biofiltration systems to treat VOCs is the uncertainty regarding the appropriate nutrient supply to the filter bed to preserve microbial activity. This study showed that all the elements, except nitrogen, were retained sufficiently in the filter bed when a proper composition of nutrient solution was used for irrigation; however, phosphate addition may be needed when restarting a reactor from a prolonged period of shutdown. Distinct differences in the amount of transfer to the filter bed for different ingredients are probable, and may have to be taken into account when operating biofiltration reactors.  相似文献   
107.

Background

In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution.

Review

This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years.

Conclusion

Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.  相似文献   
108.
Nanoscale materials and their use in water contaminants removal—a review   总被引:2,自引:0,他引:2  
Water scarcity is being recognized as a present and future threat to human activity and as a consequence water purification technologies are gaining major attention worldwide. Nanotechnology has many successful applications in different fields but recently its application for water and wastewater treatment has emerged as a fast-developing, promising area. This review highlights the recent advances on the development of nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater that are contaminated by toxic metals, organic and inorganic compounds, bacteria and viruses. In addition, the toxic potential of engineered nanomaterials for human health and the environment will also be discussed.  相似文献   
109.
As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH reductase, and GSH-metabolizing enzymes such as GSH peroxidase and GSH sulfotransferase were significantly higher in shoot of E. angustifolium. Despite the higher total GSH content, L. perenne is vulnerable to multi-metals-induced stress in comparison to E. angustifolium as depicted by increased GSH- and protein oxidation, low reactive oxygen radical-processing potential (exhibited in terms of low catalase activity) and poor GSH pool utilization efficiency (in terms of lower GSH-associated enzymes activities). The outcome of the present study may be significant for understanding vital GSH-mediated metals and metalloids tolerance mechanisms in plants as well as their unsuitability for animal consumption due to higher metals and metalloids burdens.  相似文献   
110.
Arsenic (As) contamination in the environment has attracted considerable attention worldwide. The objective of the present study was to see the comparative effect of As species As(III) and As(V) on accumulation, biochemical responses, and gene expression analysis in Brassica juncea var. Pusa Jaganath (PJn). Hydroponically grown 14-day-old seedlings of B. juncea were treated with different concentrations of As(III) and As(V). Accumulation of total As increased with increasing concentration of both As species and exposure time, mainly in roots. Reduction in seed germination, root–shoot length, chlorophyll, and protein content were observed with increasing concentration and exposure time of both As species, being more in As(III)-treated leaves. PJn variety showed that antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX)) and stress-related parameters (cysteine, proline, and malondialdehyde (MDA)) were stimulated and allows plant to tolerate both As species. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis in leaves showed significant changes in protein profile with more stringent effect with As(III) stress. Semiquantitative RT-PCR analysis showed regulation in expression of phytochelatin synthase (PCS), metallothionine-2 (MT-2), glutathione reductase (GR), and glutathione synthetase (GS) genes under both As(III) and As(V) stresses. Results suggested that accumulation and inhibition on physiological parameters differ according to the As species, while molecular and biochemical parameters showed a combinatorial type of tolerance mechanism against As(III) and As(V) stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号