首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
基础理论   13篇
社会与环境   1篇
  2017年   1篇
  2011年   1篇
  2010年   1篇
  1994年   1篇
  1992年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
A number of species of macroalagae possess a flat, strap-like blade morphology in habitats exposed to rapidly-moving water whereas those at protected sites have a wider, undulate blade shape. We have explored the functional consequences of flat, narrow vs. wide, undulate blade morphologies in the giant bull kelpNereocystis luetkeana. Our study focused on the behavior of blades in ambient water currents and the consequences of that behavior to breakage and to photosynthesis. In flowing water, the narrow, flat blades flap with lower amplitude and collapse together into a more streamlined bundle than do wide, undulate blades, and hence experience lower drag per blade area at a given flow velocity. If the algae at current-swept sites had ruffled blades, drag forces would sometimes be sufficient to break the stipes. However, flat blades in a streamlined bundle experience more self-shading than do undulate blades, which remain spread out in water currents. Thus, there is a morphological trade-off between reducing drag and reducing self-shading. Photosynthetic14C-HCO3 uptake rates decrease in slow flow when the boundary layer along the blade surface across which diffusion takes place is relatively thick. However, blade flapping, which stirs water near the blade surface, enhances carbon uptake rates in slow water currents for both the undulate and the flat morphologies.  相似文献   
12.
Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 E m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 E m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.  相似文献   
13.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   
14.
The temperate seagrass Zostera marina L. is common in coastal marine habitats characterized by the presence of reducing sediments. The roots of this seagrass grow in these anoxic sediments, yet eelgrass is highly productive. Through photosynthesis-dependent oxygen transport from leaves to roots, aerobic respiration is supported in eelgrass roots only during daylight; consequently, roots are subjected to diurnal periods of anoxia. Under anoxic root conditions, the amino acids alanine and -amino butyric acid accumulate within a few hours to account for 70% of the total amino acid pool, while glutamate and glutamine decline. Little ethanol is produced, and the pool size of the organic acid malate changes little or declines slowly. Upon the resumption of shoot photosynthesis and oxygen transport to the roots, the accumulated -amino butyric acid declines rapidly, glutamate and glutamine pools increase, and alanine declines over a 16-h period. These adaptive metabolic responses by eelgrass to diurnal root anoxia must contribute to the successful exploitation of shallow-water marine sediments that have excluded nearly all vascular plant groups. A metabolic scheme is presented that accounts for the observed changes in organic and amino acid pool sizes in response to anoxia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号