首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1172篇
  免费   8篇
  国内免费   29篇
安全科学   12篇
废物处理   57篇
环保管理   148篇
综合类   100篇
基础理论   203篇
污染及防治   410篇
评价与监测   213篇
社会与环境   64篇
灾害及防治   2篇
  2023年   33篇
  2022年   76篇
  2021年   60篇
  2020年   12篇
  2019年   26篇
  2018年   38篇
  2017年   35篇
  2016年   55篇
  2015年   29篇
  2014年   49篇
  2013年   150篇
  2012年   55篇
  2011年   63篇
  2010年   54篇
  2009年   47篇
  2008年   64篇
  2007年   48篇
  2006年   44篇
  2005年   35篇
  2004年   31篇
  2003年   29篇
  2002年   20篇
  2001年   18篇
  2000年   9篇
  1999年   10篇
  1998年   4篇
  1997年   8篇
  1996年   6篇
  1993年   5篇
  1992年   7篇
  1991年   9篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1984年   2篇
  1982年   5篇
  1980年   2篇
  1978年   4篇
  1976年   6篇
  1975年   4篇
  1974年   2篇
  1972年   3篇
  1969年   5篇
  1968年   4篇
  1965年   2篇
  1959年   2篇
  1957年   3篇
  1956年   2篇
排序方式: 共有1209条查询结果,搜索用时 187 毫秒
881.
Earthworms,pesticides and sustainable agriculture: a review   总被引:1,自引:0,他引:1  
The aim of this review is to generate awareness and understand the importance of earthworms in sustainable agriculture and effect of pesticides on their action. The natural resources are finite and highly prone to degradation by the misuse of land and mismanagement of soil. The world is in utter need of a healthy ecosystem that provides with fertile soil, clean water, food and other natural resources. Anthropogenic activities have led to an increased contamination of land. The intensification of industrial and agricultural practices chiefly the utilization of pesticides has in almost every way made our natural resources concave. Earthworms help in a number of tasks that support many ecosystem services that favor agrosystem sustainability but are degraded by exhaustive practices such as the use of pesticides. The present review assesses the response of earthworm toward the pesticides and also evaluates the relationship between earthworm activity and plant growth. We strictly need to refresh and rethink on the policies and norms devised by us on sustainable ecology. In an equivalent way, the natural resources should be utilized and further, essential ways for betterment of present and future livelihood should be sought.  相似文献   
882.
Weed management is one of the prime concerns for sustainable crop production. Conyza bonariensis and Conyza canadensis are two of the most problematic, noxious, invasive and widespread weeds in modern-day agriculture. The biology, ecology and interference of C. bonariensis and C. canadensis have been reviewed here to highlight pragmatic management options. Both these species share a unique set of biological features, which enables them to invade and adapt a wide range of environmental conditions. Distinct reproductive biology and an efficient seed dispersal mechanism help these species to spread rapidly. Ability to interfere strongly and to host crop pests makes these two species worst weeds of cropping systems. These weed species cause 28–68 % yield loss in important field crops such as soybean and cotton every year. These weeds are more prevalent in no-till systems and, thus, becoming a major issue in conservation agriculture. Cultural practices such as crop rotations, seed rate manipulation, mulching, inter-row tillage and narrow row spacing may provide an effective control of these species. However, such methods are not feasible and applicable under all types of conditions. Different herbicides also provide a varying degree of control depending on crop, agronomic practices, herbicide dose, application time and season. However, both these species have evolved resistance against multiple herbicides, including glyphosate and paraquat. The use of alternative herbicides and integrated management strategies may provide better control of herbicide-resistant C. bonariensis and C. canadensis. Management plans based on the eco-biological interactions of these species may prove sustainable in the future.  相似文献   
883.
Man’s increased demand for food and better living conditions has led to over exploitation of resources and the consequent generation of enormous amounts of liquid and solid waste materials. This is one of the global challenges for mankind. In Malaysia, palm oil mill waste (POMW) contributes the highest proportion of industrial solid wastes produced yearly. Wastes from the mills include palm oil mill effluent, decanter cake, empty fruit bunches, seed shells and the fibre from the mesocarp. Direct application of POMW into agricultural soil has resulted in a number of problems such as water pollution, leaching. However, with application rates specific for targeted plant species, land application can be employed as a permanent solution to the problem of waste from palm oil mills. This review examines the characteristics of each of the palm oil wastes and their potential for use as a future fertilizer supplement.  相似文献   
884.
The aim of the present study is to study the effect of γ-dose rate on the biodegradation of γ-sterilized polyolefins. Films of isotactic polypropylene, high density polyethylene and ethylene-propylene (EP) copolymer were sterilized under γ-radiation with doses of 10 and 25 kGy. Two different 60Co sources were used with dose rate 600 and 780 Gy h−1. Neat and sterilized samples were incubated in compost and fungal culture environments. The changes in functional groups, surface morphology and intrinsic viscosity in polymer chains were characterized by FT-IR spectroscopy, SEM and viscometric measurements, respectively. It was observed that both γ-degradation and biodegradation processes depend on the dose rate of γ-source. It was found that the biodegradation of γ-sterilized polyolefins in composting and microbial culture environments increased with decreasing the γ-dose rate.  相似文献   
885.
ABSTRACT

In the era of developing technologies, there is always been a crisis of rising demands of energy. There is no skepticism that a lot of energy is being produced every hour for almost each and every field, but still an exploration is needed to come up with new and viable options for energy creation. The same is the objective of this paper which proposes the use of waste biomaterials in association with organic and inorganic materials as a source of energy to power up small electronic devices. In this research egg shell membrane (ESM)-based triboelectric nanogenerator (TENG) is proposed in combination with calotropis (Calo), cellulose from fruit of Bombax Ceiba (BOM), cellulose in form of tissue paper (TISU), dog hair (DH), polytetrafluoroethylene (PTFE), aluminum (Al), and copper (Cu). ESM is eco-friendly waste food by-product and available in abundance. Characterization of ESM is done by scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectrophotometer (FTIR). The proposed ESM-PTFE-based TENG power up 462 green LEDs (462 × 2 V = 924 V ~ 1 kV) without rectifier and produced up to 7.61 µJ energy with 4.7 µF capacitor at 200 tapings. All the proposed ESM-based TENG combinations generate sufficient voltage to turn ON the wrist watch. This green-energy-based TENG has potential application in various fields especially related to medical devices.  相似文献   
886.
India is the first country to introduce environmental legislation in the constitution but because of lengthy legal procedures, it is very difficult to control environmental deterioration. There are many factors responsible for this deterioration. Coal mining is one such activity where deterioration is very severe and the present communication aims this aspect. Coal is the one of the most essential mineral having large reserves in India. It’s mining and beneficiation produce a variety of pollutants. The main pollutants emitted during the processing of coal are green house gases, coal dust and acid mine drainage. Many reports on different aspects of coal mining are available including reports on emission of different pollutants but the present work is probably only of it’s kind in which the authors have tried to determine environment liability directly in terms of economy. It was found that greenhouse liabilities, coal dust liability and sulphur liability are accounted for 12.07, 5.0 and 101.97 US$, making an overall 2.4% of the total economic gains due to coal mining. During the calculations approximate number of total workers and other parameters have been taken into consideration. Who pays for this irreversible damage is a question. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue.  相似文献   
887.
Open crop stubble burning events were observed in and around Patiala city, India. A ground level study was deliberated to analyze the contribution of wheat (Triticum aestivum) and rice (Oriza sativa) crop stubble burning practices on concentration levels of aerosol, SO2 and NO2 in ambient air at five different sites in and around Patiala city covering agricultural, commercial and residential areas. Aerosols were collected on GMF/A and QMF/A (Whatman) sheets for a 24 h period throughout the year in 2007. Simultaneously, sampling of SO2 and NO2 was conducted and results obtained during stubble burning periods were compared to the non-stubble burning periods. Results clearly pointed out a distinct increase in aerosol, SO2 and NO2 levels during the crop stubble burning periods.  相似文献   
888.
The cultivation of white rot edible fungus Pleurotus florida was performed in polybags. The corn cob was employed as basal substrate while eight different additives such as urea, ammonium sulphate, gram flour, soybean meal, ground nut cake and molasses were used with corn cob. Three different levels of variable combinations with corn cob were evaluated in response to different parameters of mushroom viz., mycelial growth, spawn running, primordial initiation, fruit body yield and its biological efficiency. Each additive at different combinations showed variable impact on the different stages of mushroom life cycle. The primordial initiation was observed for the first time during 20.2–35.1 days. The biological efficiencies in every supplemented set were increased over un-supplemented control set. Increasing the level of additives, the biological efficiency was negatively affected at higher levels. The cotton seed cake was found the best supplement producing 93.75% biological efficiency while soybean meal was the second best additive producing 93.00% yield. The highest growth rate, rapid mycelia run, early primordial initiation, highest yield and biological efficiency were recorded in the combination of corn cob and cotton seed cake at 2% (98 + 2) level.  相似文献   
889.
Review of fluoride removal from drinking water   总被引:9,自引:0,他引:9  
Fluoride in drinking water has a profound effect on teeth and bones. Up to a small level (1–1.5 mg/L) this strengthens the enamel. Concentrations in the range of 1.5–4 mg/L result in dental fluorosis whereas with prolonged exposure at still higher fluoride concentrations (4–10 mg/L) dental fluorosis progresses to skeletal fluorosis. High fluoride concentrations in groundwater, up to more than 30 mg/L, occur widely, in many parts of the world. This review article is aimed at providing precise information on efforts made by various researchers in the field of fluoride removal for drinking water. The fluoride removal has been broadly divided in two sections dealing with membrane and adsorption techniques. Under the membrane techniques reverse osmosis, nanofiltration, dialysis and electro-dialysis have been discussed. Adsorption, which is a conventional technique, deals with adsorbents such as: alumina/aluminium based materials, clays and soils, calcium based minerals, synthetic compounds and carbon based materials. Studies on fluoride removal from aqueous solutions using various reversed zeolites, modified zeolites and ion exchange resins based on cross-linked polystyrene are reviewed. During the last few years, layered double oxides have been of interest as adsorbents for fluoride removal. Such recent developments have been briefly discussed.  相似文献   
890.
This study investigated phosphate-induced lead immobilization from different Pb minerals in soils under varying pHs. Four soils were used, including one Pb-contaminated soil (NC-Soil) and three soils spiked with litharge (PbO), cerrusite (PbCO3), or anglesite (PbSO4), referred to as PbO-soil, PbCO3-soil, and PbSO4-soil, respectively. The soils were equilibrated with KCl and Ca(H2PO4)(2).H2O under pH of 3-7. At low pH (3 and 5), Pb solubility followed PbO-soil>PbCO3-soil>PbSO4-soil; while at pH=7, it was PbSO4-soil>PbO-soil>PbCO3-soil. Phosphate decreased Pb dissolution time from >180 to <60 min and reduced soluble Pb by 67-100%. This was mostly via transformation of Pb minerals into chloropyromorphite [Pb(5)(PO(4))(3)Cl]. Our results indicated that P addition can effectively transform various Pb minerals into insoluble chloropyromorphite in soils. This transformation was more significant at acidic condition (e.g., pH相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号