首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   4篇
  国内免费   7篇
安全科学   31篇
废物处理   41篇
环保管理   79篇
综合类   89篇
基础理论   141篇
环境理论   3篇
污染及防治   184篇
评价与监测   40篇
社会与环境   26篇
灾害及防治   5篇
  2023年   7篇
  2022年   10篇
  2021年   20篇
  2020年   16篇
  2019年   14篇
  2018年   16篇
  2017年   26篇
  2016年   29篇
  2015年   23篇
  2014年   40篇
  2013年   45篇
  2012年   43篇
  2011年   49篇
  2010年   33篇
  2009年   41篇
  2008年   43篇
  2007年   37篇
  2006年   30篇
  2005年   17篇
  2004年   24篇
  2003年   8篇
  2002年   16篇
  2001年   4篇
  2000年   7篇
  1999年   3篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有639条查询结果,搜索用时 176 毫秒
401.
Extracellular polymeric substances (EPS) play an important role in bacterial mat formation and sediment stabilisation of coastal zones. The analysis of these secretion products on a molecular level is a prerequisite to understand their formation mechanisms and ecological function in microbial consortia. The present study focuses on the optimisation of EPS isolation and characterisation from cohesive cyanobacterial mats. Extracted EPS were analysed for quantity, content of total organic carbon and nitrogen, and bulk contents of neutral sugars, uronic acids, and proteins. These criteria are strongly influenced by the extraction conditions applied and therefore, the effects of different extraction media (NaCl or artificial seawater), addition of EDTA, centrifugal force, and purification via repeated ethanol precipitation on extraction success were determined. From this an optimised extraction procedure for EPS resulted. When using fresh mat samples, the yield of EPS amounted to 3.3 ± 0.8 mg g−1 mat (dw). The isolated EPS were composed of nearly equal amounts of proteins and uronic acids (12.7 ± 1.5 and 11.8 ± 1.1%, respectively) and the bulk content of neutral sugars was 30.5 ± 2.6%. High contents of TOC and TN indicated relatively pure EPS and only a low contribution of inorganic compounds. Furthermore, low contents of 2-keto-3-deoxyoctonate and the small protein/polysaccharide-ratio in the EPS extracted by our method, signified low contaminations by intracellular polymers and hence a low rupture of cells. Our method provides an useful tool to evaluate further investigations of the composition, characteristics and properties of EPS on a sound basis.  相似文献   
402.
403.
Background, aim and scope

Mercury (Hg) is a ubiquitous and hazardous contaminant in the aquatic environment showing a strong biomagnification effect along the food chain. The most common transfer path of Hg to humans is contaminated fish consumption. In severely exposed humans, Hg poisoning may lead to damage in the central nervous system. Thus, it is important to examine current and past contamination levels of Hg in aquatic milieu. The Olt River is the largest Romanian tributary of the Danube River. The use of Hg as an electrode in a chlor-alkali plant contributed to the contamination of the aquatic environment in the Rm Valcea region. The purpose of this study was to compare the current state of Hg contamination with the past contamination using a historical record obtained from a dated sediment core from one of the Olt River reservoirs (Babeni) located downstream from the chlor-alkali plant. To our knowledge, no published data on Hg contamination in this region are available. The Babeni Reservoir was selected for this study because it is situated downstream from the chlor-alkali plant, whilst the other reservoirs only retain the pollutants coming from the upstream part of the watershed. Preliminary analyses (unpublished) showed high Hg concentrations in the surface sediment of the Babeni Reservoir. One core was taken in the upstream Valcea Reservoir to provide a local background level of Hg concentrations in sediments.

Results and discussion

Sediment texture was uniform in the cores from both reservoirs. Laminated sediment structure, without any obvious discontinuities, was observed. Hg concentrations in the sediment core from the Valcea Reservoir were low and constant (0.01–0.08 mg/kg). In Babeni Reservoir sediments, Hg concentrations were very high in the deeper core section (up to 45 mg/kg in the longest core) and decreased to lower concentrations toward the top of the cores (1.3–2.4 mg/kg). This decrease probably reflects technological progress in control of emissions from the Hg-cell-based chlor-alkali industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the 137Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments.

Conclusions

Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control.

Recommendations and perspectives

Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment–water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.

  相似文献   
404.
A major aspect of lead hazard control is the evaluation of soil lead hazards around housing coated with lead‐based paint. The use of field‐portable X‐ray fluorescence (FPXRF) to do detailed surveying, with limited laboratory confirmation, can provide lead measurements in soil (especially for planning abatement activities) in a far more cost‐efficient and timely manner than laboratory analysis. To date, one obstacle to the acceptance of FPXRF as an approved method of measuring lead in soil has been a lack of correspondence between field and laboratory results. In order to minimize the differences between field and laboratory results, RTI International (RTI) has developed a new protocol for field drying and sieving soil samples for field measurement by FPXRF. To evaluate this new protocol, composite samples were collected in the field following both U.S. Department of Housing and Urban Development (HUD) guidelines and ASTM International (ASTM) protocols, measured after drying by FPXRF, and returned to the laboratory for confirmatory inductively coupled plasma atomic emission spectroscopy (ICP‐AES) analysis. Evaluation of study data from several diverse sites revealed no statistical difference between paired FPXRF and ICP‐AES measurements using the new method. © 2008 Wiley Periodicals, Inc.  相似文献   
405.
406.
407.
408.
Taxonomic composition, biomass, primary production and growth rates of the phytoplankton community were studied in two stations in the NW Adriatic Sea on a seasonal basis, in areas characterized by differing hydrological and trophic conditions. The main differences between the two stations were quantitative rather than qualitative, most phytoplankton species being common to both stations. The effects of differing nutrient concentrations and plume spreading were evident. Biomass and primary production rates were significantly higher in the coastal station (S1), and the phytoplankton distribution in the water column was markedly stratified in S1 and more even in the offshore station (S3). However, chlorophyll a specific production, potential growth rate and production efficiencies were very similar in both stations, even when phosphorus concentrations were limiting. A discrepancy between potential and actual growth rate was observed: as a feature common to both stations, comparisons between potential and actual growth rates revealed that little carbon produced by phytoplankton accumulated as algal biomass; therefore, very high loss rates were estimated.  相似文献   
409.
The current paper is aimed at understanding the environmental fate of linear low density polyethylenes (LLDPE) films designed for mulching purposes and loaded with different pro-degradant additives. These were analyzed, upon exposure to natural sunlight for a period intended to mimick a general crop season in the mediterranean region. The selected samples underwent a relatively low extent of degradation as monitored by carbonyl index, molecular weight variation, extractability by solvent, changes in the onset of the decomposition temperature and crystallinity. The tendency to biodegradation of outdoor exposed LLDPE was then assessed under different environmental compartments including soil medium, aqueous medium as well as in axenic culture of white-rot fungus Phanerochaete chrysosporium. That fungus is known to be effective in the degradation of recalcitrant organic materials and plastic items. During the soil burial biodegradation test, lasted for 27?months, samples specimen were withdrawn at time intervals and characterized by means of structural and thermal analysis. These analytical assessments allowed to monitor any progress of oxidative degradation as a direct effect of the incubation in an active microbial environment. Analogous characterizations were carried out at the end of the biodegradation tests in aqueous medium and in P. chrysosporium axenic cultures. Data presented here are in keeping with the initial abiotic oxidation via a free radical chain reaction promoted by a pro-degradant additive acting on hydroperoxides and peroxide moieties present initially in the polymer bulk. This step was followed by a free radical cascade reactions leading to degradation once the oxidation started under relatively mild conditions (sunlight exposure). During the incubation step in soil, the abiotically degraded samples underwent significant variation in the level of oxidation and degradation with respect to the detected starting values. Indications were gained on the synergistic effect of a random fashion microbial metabolization coupled to biotically mediated oxidation of the original abiotically fragmented samples. Similar results were obtained in the biodegradation tests carried out in the aqueous media and in presence of P. chrysosporium axenic cultures. These evidences are suggesting the role of natural occurring microorganisms in promoting both partial oxiditation and degradation of LLDPE samples in combination with contextual mineralization process of the oxidized fragments.  相似文献   
410.
A study was conducted to investigate fenhexamid (FEX) behavior in soil and in water. FEX proved to be rather stable at acid pH but showed slight degradation at neutral and alkaline pH. After 101 days of FEX spiking of a soil sample, 94% at pH 4, 12% at pH 7 and 23% at pH 9 of the active ingredient was still present. In natural water the rate of FEX disappearance appeared to be slow which may be due to abiotic rather than biotic processes. The soil degradation tests showed low persistence of the active ingredient if a good microflora activity is guaranteed (DT50 about 1 day). Moreover, in absence of microorganisms, FEX proved to be stable. Humidities of 25 and 50% of Water Holding Capacity (WHC) influenced in equal measure the rate of degradation. From the same soil, a bacterium was isolated and identified as Bacillus megaterium, which was able to metabolize FEX with the hydroxylation of the cyclohexane ring. Moreover, FEX showed an elevated affinity for humic acid (73%), smectite (31%), and ferrihydrite(20%) and low affinity for vermiculite (11%) and kaolinite (7%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号