首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
废物处理   1篇
环保管理   2篇
综合类   6篇
基础理论   6篇
污染及防治   3篇
社会与环境   4篇
  2022年   1篇
  2021年   1篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1985年   1篇
排序方式: 共有22条查询结果,搜索用时 281 毫秒
21.
The amount of carbon stored in savannas represents a significant uncertainty in global carbon budgets, primarily because fire causes actual biomass to differ from potential biomass. We analyzed the structural response of woody plants to long-term experimental burning in savannas. The experiment uses a randomized block design to examine fire exclusion and the season and frequency of burn in 192 7-ha experimental plots located in four different savanna ecosystems. Although previous studies would lead us to expect tree density to respond to the fire regime, our results, obtained from four different savanna ecosystems, suggest that the density of woody individuals was unresponsive to fire. The relative dominance of small trees was, however, highly responsive to fire regime. The observed shift in the structure of tree populations has potentially large impacts on the carbon balance. However, the response of tree biomass to fire of the different savannas studied were different, making it difficult to generalize about the extent to which fire can be used to manipulate carbon sequestration in savannas. This study provides evidence that savannas are demographically resilient to fire, but structurally responsive.  相似文献   
22.
Protected areas (PAs) are often implemented without consideration of already existing PAs, which is likely to cause an overrepresentation of certain biophysical conditions. We assessed the representativeness of the current PA network with regard to the world's biophysical conditions to highlight which conditions are underprotected and where these conditions are located. We overlaid terrestrial and marine PAs with information on biophysical conditions (e.g., temperature, precipitation, and elevation) and then quantified the percentage of area covered by the PA network. For 1 variable at a time in the terrestrial realm, high temperature, low precipitation, and medium and very high elevation were underrepresented. For the marine realm, low and medium sea surface temperature (SST), medium and high sea surface salinity (SSS), and the deep sea were underrepresented. Overall, protection was evenly distributed for elevation across the terrestrial realm and SST across the marine realm. For 2 variables at a time, cold and very dry terrestrial environments had mostly low protection, which was also the case for low SST and low and medium SSS across most depths for marine environments. Low protection occurred mostly in the Sahara and the Arabian Peninsula for the terrestrial realm and along the Tropic of Capricorn and toward the poles for the marine realm. Although biodiversity measures are of prime importance for the design of PA networks, highlighting biophysical gaps in current PAs adds a frequently overlooked perspective. These gaps may weaken the potential of PAs to conserve biodiversity. Thus, our results may provide useful insights for researchers, practitioners, and policy makers to establish a more comprehensive global PA network.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号