首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   0篇
  国内免费   2篇
安全科学   3篇
废物处理   3篇
环保管理   3篇
综合类   4篇
基础理论   18篇
污染及防治   11篇
评价与监测   2篇
社会与环境   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  1998年   1篇
  1994年   2篇
排序方式: 共有46条查询结果,搜索用时 62 毫秒
11.
12.

Chemical leak was numerically simulated for four chemical substances: benzene (light non-aqueous phase liquid (NAPL)), tetrachloroethylene (dense NAPL), phenol (soluble in water), and pentachlorophenol (white crystalline solid) in a hypothetical subsurface leak situation using a multiphase compositional transport model. One metric ton of chemical substances was assumed to leak at a point 3.51 m above the water table in a homogeneous unconfined aquifer which had the depth to water table of 7.135 m, the hydraulic gradient of 0.00097, the recharge rate of 0.7 mm/day, and the permeability of 2.92?×?10?10 m2. For comparison, surface spill scenarios, which had a long pathway from source to the water table, were simulated. Using the model results, point-source pollutant loadings to soil and groundwater were calculated by multiplying mass, impact area, and duration above and below the water table respectively. Their sensitivity to subsurface properties (depth to water table, recharge rate, porosity, organic carbon content, decay rate, hydraulic gradient, capillary pressure, relative permeability, permeability) was analyzed, with changing each parameter within acceptable ranges. The study result showed that the pollutant loading to groundwater was more sensitive to the subsurface properties than the pollutant loading to soil. Decay rate, groundwater depth, hydraulic gradient and porosity were influential to pollutant loadings. The impact of influential parameters on pollutant loadings was nonlinear. The dominant subsurface properties of pollution loadings (e.g., decay rate, groundwater depth, hydraulic gradient, and porosity for groundwater) also affect the vulnerability, and the subsurface pollutant loadings defined in this study are dependent on chemical properties as well, which indicates that the influential hydrogeological and physicochemical parameters to pollutant loadings can be used for pollution potential assessment. The contribution of this work is the suggestion that the sensitivity of pollutant loadings can be used for pollution potential assessment. Soil and groundwater pollution potential of chemicals are discussed altogether for leak scenarios. A physics-based model is used to understand the impact of subsurface properties on the fate and transport of chemicals above and below the water table, and consequently their impact on the pollutant loading to soil and groundwater.

  相似文献   
13.
This research investigated heavy metal pollution of soils and dusts in two representative satellite cities of Seoul, Korea and studied the seasonal variations in metal concentrations through the rainy season and the chemical forms of metals using a sequential extraction analysis. The metal dispersion pattern was illustrated to match with urban structure. Soil and dust samples were collected from the cities of Uijeongbu and Koyang, which are the northern and northwestern satellite cities of Seoul (the capital), before and after rainy season. Concentrations of Cu, Pb and Zn were higher than those of the world averages for soils, and their levels decreased after rain, particularly in highly contaminated samples. Relatively high pH values were found in roadside soils, but no seasonal variation was found after the rainy season. The three metals (Cu, Pb and Zn) in soils and dusts were associated with various chemical fractions of soils and dusts as distinguished by the sequential extraction scheme, and a strong similarity of metal association between soils and dusts was found, which indicates that airborne dust may be a principle source of soil contamination. Copper is uniformly distributed, and Pb is largely associated with the reducible phase. There is an appreciable proportion of total Zn in the exchangeable/water-acid soluble fraction. After the rainy season, the most soluble fractions in soils and dusts were leached away. In terms of mobility and bioavailability of metals in soils and dusts, the order Zn >> Cu > Pb is suggested. Geographical variations of total metals corresponded well with urbanised areas of cities, especially the industrial complex and major motorways.  相似文献   
14.
Hydrogeologic and hydrochemical data for subway tunnel seepage waters in Seoul (Republic of Korea) were examined to understand the effect of underground tunnels on the degradation of urban groundwater. A very large quantity of groundwater (up to 63 million m3 year− 1) is discharged into subway tunnels with a total length of 287 km, resulting in a significant drop of the local groundwater table and the abandonment of groundwater wells. For the tunnel seepage water samples (n = 72) collected from 43 subway stations, at least one parameter among pathogenic microbes (total coliform, heterotrophic bacteria), dissolved Mn and Fe, NH4+, NO3, turbidity, and color exceeded the Korean Drinking Water Standards. Locally, tunnel seepage water was enriched in dissolved Mn (avg. 0.70 mg L− 1, max. 5.58 mg L− 1), in addition to dissolved Fe, NH4+, and pathogenic microbes, likely due to significant inflow of sewage water from broken or leaking sewer pipes.Geochemical modeling of redox reactions was conducted to simulate the characteristic hydrochemistry of subway tunnel seepage. The results show that variations in the reducing conditions occur in urban groundwater, dependent upon the amount of organic matter-rich municipal sewage contaminating the aquifer. The organic matter facilitates the reduction and dissolution of Mn- and Fe-bearing solids in aquifers and/or tunnel construction materials, resulting in the successive increase of dissolved Mn and Fe. The present study clearly demonstrates that locally significant deterioration of urban groundwater is caused by a series of interlinked hydrogeologic and hydrochemical changes induced by underground tunnels.  相似文献   
15.
The concentrations and loadings of major and trace elements in coal mine drainage (CMD) from 49 abandoned mines located in the coal fields of the Brazilian state of Santa Catarina were determined. The CMD sites typically displayed a wide spatial and temporal variability in physical and geochemical conditions. The results of our CMD analyses in Santa Catarina State were used to illustrate that the geochemical processes in the rock piles can be deduced from multiple data sets. The observed relationship between the pH and constituent concentrations were attributed to (1) dilution of acidic water by near-neutral or alkaline groundwater and (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals. The preliminary results of the CMD analyses and environmental health in the Santa Catarina region, Brazil, are discussed.  相似文献   
16.
Swine excreta were dried by boiling via immersion in hot oil. In this method, moisture in the excreta is replaced with oil or evaporated by turbulent heat transfer in high-temperature oil. The dried excreta can be used in an incinerator like low-rank coal or solid fuel. Refined waste oil and B–C heavy oil were used for drying. Drying for 8 min at 150 °C reduced the water content of raw excreta from 78.90 wt.% to 1.56 wt.% (refined waste oil) or 1.62 wt.% (B–C heavy oil) and that of digested excreta from 79.58 wt.% to 3.40 wt.% (refined waste oil) or 3.48 wt.% (B–C heavy oil). The low heating values of the raw and digested excreta were 422 kJ/kg and ?2,713 kJ/kg, respectively, before drying and 27,842–28,169 kJ/kg and 14,394–14,905 kJ/kg, respectively, after drying. A heavy metal analysis did not detect Hg, Pb, Cd, As, and Cr in the dried excreta, but Al, Cu, and Zn, which occur in the feed formula, were detected. Thermogravimetric analysis before and after drying revealed that emission of volatiles and combustion of volatiles and fixed carbon occurred at temperatures of 250–500 °C when air was used as the transfer gas.  相似文献   
17.
Live algae carrying hydrophobic xenobiotics can be an effective vector candidate for the chemical translocation to filter feeders in the laboratory toxicity test, but information on their application is lacking. Time-course uptake and elimination of polychlorinated biphenyls (PCBs) (0, 50, 100, and 500 ng g(-1) by two key algal foods, Isochrysis galbana and Tetraselmis suecica, were measured. Both of the algae achieved maximum concentration in an hourafter PCBs exposure regardless the chemical concentrations in our time-course measurements (0, 1, 5, 10, 24, 48 and 72 hrs). Once achieved the maximum concentration, the algae shortly exhibited elimination or eliminating tendency depending on the chemical concentrations. Algae exposed to the chemical for 1 and 24 hrs (hereafter 1 and 24 hr vectors, respectively) were then evaluated as a chemical translocation vector by feeding test to larval and spat Crassostrea gigas. In the feeding test the 24 hr vector, which contained lower chemicals than the 1-hr vector, appeared to be more damaging the early lives of the oyster. This was particularly significant for vectors of higher PCBs (p<0.05), probably due to algal reduction in food value by the prolonged chemical stress. These findings imply that 1 hr exposure is long enough for a generation of algal vector for laboratory toxicity test, minimizing data error resulted from reduction in food value by longer chemical stress.  相似文献   
18.
This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment.  相似文献   
19.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   
20.
Chae KJ  Kim SM  Park HD  Yim SH  Kim IS 《Chemosphere》2008,71(5):961-968
Hydrophobic sponge media require a relatively long start-up period, as they just float on the surface of aeration tanks due to their little tendency to adsorb water, which causes a delay in the initiation of bacterial attachment. In order to overcome this difficulty, a new pseudo-amphoteric BioCube media (a standard BioCube is hydrophobic) using polyalkylene oxide-modified polydimethylsiloxane (PDMS) as a surfactant was developed. Of the many evaluated hydrophilizing agents, polyalkylene oxide-modified PDMS was found suitable. Among the diverse types of modified PDMS, the non-reactive polyethylene oxide-modified PDMS was found to be optimum agent. Pseudo-amphoteric BioCube media are readily immersible, but after complete immersion, they gradually become hydrophobic, as the polyethylene oxide-modified PDMS is designed to alienate from polyurethane backbone of BioCube to provide hydrophobic surfaces exhibiting more affinity for bacterial attachment. Clearly, the pseudo-amphoteric BioCube showed faster bacterial attachment during the early stage due to chances of enhanced contact between the bacteria and media surfaces, but the extent of attachment between the hydrophobic and pseudo-amphoteric BioCube was similar at the steady state because the former (pseudo-amphoteric BioCube) had already changed to hydrophobic. Fluorescent in situ hybridization result showed 14% occupation by ammonia oxidizing bacteria, 13% by nitrite oxidizing bacteria and 73% by others in pseudo-amphoteric BioCube, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号