首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
环保管理   14篇
综合类   4篇
基础理论   2篇
污染及防治   6篇
社会与环境   1篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
21.
The interactions between Zn and Cd on the concentration and tissue distribution of these metals in lettuce and spinach were studied at levels corresponding to background and Zn-Cd contaminated sites. Plants were grown in nutrient solutions containing 0.398-8.91 microM Zn and 0.010-0.316 microM Cd. Cadmium accumulated more in old than in young leaves of both crops at any solution Cd level, whereas Zn followed that pattern only at Zn levels > or = 3.16 microM. Increasing solution Cd increased Zn concentrations in young leaves of lettuce but not of spinach, regardless of Zn levels. Cadmium concentrations in young leaves of both crops decreased exponentially with increasing solution Zn at low (0.0316 microM) but not at high (0.316 microM) solution Cd. The Zn: Cd concentration ratios in young leaves of lettuce and spinach grown at 0.316 microM Cd became greater as the solution Zn increased. Cadmium and Zn concentrations in young leaves were related more closely to the relative concentrations of Zn and Cd in solution than were the concentrations in old leaves, especially in lettuce. Studies of Zn-Cd interactions and Cd bioavailability should differentiate between basal and upper leaves of lettuce and spinach. Compared to Cd-only pollution, Zn-Cd combined pollution may not decrease Cd concentrations in lettuce and spinach edible tissues, but because it increases their Zn concentrations it lowers plant Cd bioavailability.  相似文献   
22.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   
23.
The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr after a single biosolids application. Biosolids were applied to 1.5- x 2.3-m confined plots of a Davidson clay loam (fine, kaolinitic, thermic Rhodic Kandiudult) in 1984 at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 750, 43, and 600 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Soils were sampled to a depth of 0.9 m and sectioned into 5-cm increments after separating the Ap horizon. Total (EPA-3050B), bioavailable (Mehlich-I), sequential extraction, and dispersible clay analyses were performed on samples from the control, 126 Mg ha(-1), and 210 Mg ha(-1) treatments. Trace metals are still concentrated in the top 0.2 m with slight enrichment down to 0.3 m. More than 85% of applied Cu, Ni, and Zn are still found in the topsoil where biosolids was incorporated and 95% or more of the applied metals were accounted for with mass balance calculations. Mehlich-I results showed a slight increase in metal concentration down to 0.35 m. Biosolids application increased the concentrations of trace metals in all the extracted fractions. The major portions of Cu, Zn, and Ni are associated with the metal-oxides fraction. Dispersible clay content and water-soluble metal contents were low and except for water-soluble Zn they were not affected by biosolids application. Results from this study showed that 17 yr after biosolids application there was negligible movement of trace metals through the soil profile and consequently there is little risk of contamination of ground water at this site.  相似文献   
24.
A wide array of organic chemicals occur in biosolids and other residuals recycled to land. The extent of our knowledge about the chemicals and the impact on recycling programs varies from high to very low. Two significant challenges in regulating these materials are to accurately determine the concentrations of the organic compounds in residuals and to appropriately estimate the risk that the chemicals present from land application or public distribution. This paper examines both challenges and offers strategies for assessing the risks related to the occurrence of organic compounds in residuals used as soil amendments. Important attributes that must be understood to appropriately characterize and manage the potential risks for organic chemicals in biosolids include toxicity and dose response, transport potential, chemical structure and environmental stability, analytical capability in the matrix of interest, concentrations and persistence in waste streams, plant uptake, availability from surface application versus incorporation, solubility factors, and environmental fate. This information is complete for only a few chemicals. Questions persist about the far greater number of chemicals for which toxicity and environmental behavior are less well understood. This paper provides a synopsis of analytical issues, risk assessment methodologies, and risk management screening alternatives for organic constituents in biosolids. Examples from experience in Wisconsin are emphasized but can be extrapolated for broader application.  相似文献   
25.
Poultry litter ash as a potential phosphorus source for agricultural crops   总被引:1,自引:0,他引:1  
Maryland will impose restrictions on poultry litter application to soils with excessive P by the year 2005. Alternative uses for poultry litter are being considered, including burning as a fuel to generate electricity. The resulting ash contains high levels of total P, but the availability for crop uptake has not been reported. Our objective was to compare the effectiveness of poultry litter ash (PLA) and potassium phosphate (KP) as a P source for wheat (Triticum aestivum L.) in acidic soils, without and with limestone application. Two acidic soils (pH 4.25 and 4.48) were studied, unlimed or limed to pH 6.5 before cropping. The PLA and KP were applied at 0, 39, and 78 kg P ha(-1), after which wheat was grown. Limestone significantly increased wheat yield, but the P sources without limestone did not. The two P sources were not significantly different as P fertilizer. At the 78 kg P ha(-1) rate, wheat shoot-P concentrations were 1.10 and 1.12 g kg(-1) for the PLA treatment compared with 0.90 and 0.89 g kg(-1) for KP in the nonlimed and limed soils, respectively. Trace element concentrations in wheat shoots from the PLA treatment were less than or equal to KP and the control. The low levels of water-soluble P and metals in the soils and the low metal concentrations in wheat suggest that PLA is an effective P fertilizer. Further studies are needed to determine the optimum application rate of PLA as a P fertilizer.  相似文献   
26.
The USEPA standards (40 CFR Part 503) for the use or disposal of sewage sludge (biosolids) derived risk-based numerical values for Mo for the biosolids --> land --> plant --> animal pathway (Pathway 6). Following legal challenge, most Mo numerical standards were withdrawn, pending additional field-generated data using modern biosolids (Mo concentrations <75 mg kg(-1) and a reassessment of this pathway. This paper presents a reevaluation of biosolids Mo data, refinement of the risk assessment algorithms, and a reassessment of Mo-induced hypocuprosis from land application of biosolids. Forage Mo uptake coefficients (UC) are derived from field studies, many of which used modern biosolids applied to numerous soil types, with varying soil pH values, and supporting various crops. Typical cattle diet scenarios are used to calculate a diet-weighted UC value that realistically represents forage Mo exposure to cattle. Recent biosolids use data are employed to estimate the fraction of animal forage (FC) likely to be affected by biosolids applications nationally. Field data are used to estimate long-term Mo leaching and a leaching correction factor (LC) is used to adjust cumulative biosolids application limits. The modified UC and new FC and LC factors are used in a new algorithm to calculate biosolids Mo Pathway 6 risk. The resulting numerical standards for Mo are cumulative limit (RPc)=40 kg Mo ha(-1), and alternate pollutant limit (APL) = 40 mg Mo kg(-1) We regard the modifications to algorithms and parameters and calculations as conservative, and believe that the risk of Mo-induced hypocuprosis from biosolids Mo is small. Providing adequate Cu mineral supplements, standard procedure in proper herd management, would augment the conservatism of the new risk assessment.  相似文献   
27.
In risk assessment models, solid–solution partition coefficient, Kd, and plant uptake factor, PUF, are often employed to depict the fate and transport of trace elements in soils. The trustworthiness of risk assessments depends on the reliability of the parameters used. In this study, we examined Kd and PUF for As, Cd and Pb based on soils and plant tissues obtained from 70 crop production fields in California. We also examined the California portion of a nationwide survey of trace elements in cropland soils conducted by the Soil Survey, Natural Resources Conservation Service, USDA. Results showed that the Kd and PUF for cropland soils are probabilistic in nature and follow log-normal distributions. The trace element concentration of the soil solution did not appear to be a more appropriate estimator of PUF than the total soil element content. The Kd used in the CDFA (California Department of Food and Agriculture) study had a much wider range than that could occur in California croplands while the PUF used in the CDFA risk assessment was comparable to patterns observed in the field measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号