Enantioselectivity of chiral pollutants is receiving growing concern due to the difference in toxicology and environment fate between enantiomers.In this study,enantiomers of insecticide beta-cypermethrin (beta-CP) were separated on selected chiral column by HPLC,and the toxicity of enantiomers was evaluated using the zebrafish embryo-larval assays.The enantiomers of beta-CP were baseline separated on Chiralcel OD and Chiralpak AD columns and detected by circular dichroism (CD) at 236 nm.Better separation could be achieved at lower temperature (e.g.,20°C) and with lower levels of polar modifiers.Pure enantiomers were obtained on Chiralcel OD.The CD spectra of enantiomers were recorded.By comparing the elution order with a previous similar study,the absolute configuration of beta-CP enantiomers was determined.The individual enantiomers were used in zebrafish embryo test,and the results showed that beta-CP enantioselectively induced yolk sac edema,pericardial edema and crooked body.The 1R-cis-αS and 1R-trans-αS enantiomers showed strong developmental toxicities at concentration of 0.1 mg/L,while the 1S-cis-αR and 1S-trans-αR induced no malformations at higher concentration (e.g.,0.3 mg/L).The results suggest that the enantioselective toxicological effects of beta-CP should be considered when evaluating its ecotoxicological effects. 相似文献
Environmental Science and Pollution Research - Uranium tailing ponds are a potential major source of radioactive pollution. Solidification treatment can control the diffusion and migration of... 相似文献
Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.