首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6662篇
  免费   44篇
  国内免费   36篇
安全科学   198篇
废物处理   370篇
环保管理   717篇
综合类   952篇
基础理论   1576篇
环境理论   3篇
污染及防治   1642篇
评价与监测   493篇
社会与环境   747篇
灾害及防治   44篇
  2023年   51篇
  2022年   83篇
  2021年   69篇
  2020年   45篇
  2019年   58篇
  2018年   92篇
  2017年   108篇
  2016年   131篇
  2015年   90篇
  2014年   171篇
  2013年   548篇
  2012年   204篇
  2011年   297篇
  2010年   267篇
  2009年   265篇
  2008年   312篇
  2007年   316篇
  2006年   307篇
  2005年   255篇
  2004年   220篇
  2003年   266篇
  2002年   220篇
  2001年   272篇
  2000年   175篇
  1999年   120篇
  1998年   62篇
  1997年   68篇
  1996年   64篇
  1995年   83篇
  1994年   76篇
  1993年   69篇
  1992年   73篇
  1991年   74篇
  1990年   82篇
  1989年   65篇
  1988年   65篇
  1987年   62篇
  1986年   63篇
  1985年   56篇
  1984年   58篇
  1983年   61篇
  1982年   66篇
  1981年   49篇
  1980年   40篇
  1979年   45篇
  1978年   31篇
  1976年   30篇
  1974年   35篇
  1973年   38篇
  1972年   31篇
排序方式: 共有6742条查询结果,搜索用时 13 毫秒
901.
Garten CT  Iversen CM  Norby RJ 《Ecology》2011,92(1):133-139
Forest productivity increases in response to carbon dioxide (CO2) enrichment of the atmosphere. However, in nitrogen-limited ecosystems, increased productivity may cause a decline in soil nitrogen (N) availability and induce a negative feedback on further enhancement of forest production. In a free-air CO2 enrichment (FACE) experiment, the response of sweetgum (Liquidambar styraciflua L.) productivity to elevated CO2 concentrations [CO2] has declined over time, but documenting an associated change in soil N availability has been difficult. Here we assess the time history of soil N availability through analysis of natural 15N abundance in archived samples of freshly fallen leaf litterfall. Litterfall delta15N declined from 1998 to 2005, and the rate of decline was significantly faster in elevated [CO2]. Declining leaf litterfall delta15N is indicative of a tighter ecosystem N cycle and more limited soil N availability. By integrating N availability over time and throughout the soil profile, temporal dynamics in leaf litterfall delta15N provide a powerful tool for documenting changes in N availability and the critical feedbacks between C and N cycles that will control forest response to elevated atmospheric CO2 concentrations.  相似文献   
902.
Grace JB  Harrison S  Damschen EI 《Ecology》2011,92(1):108-120
In his classic study in the Siskiyou Mountains (Oregon, USA), one of the most botanically rich forested regions in North America, R. H. Whittaker (1960) foreshadowed many modern ideas on the multivariate control of local species richness along environmental gradients related to productivity. Using a structural equation model to analyze his data, which were never previously statistically analyzed, we demonstrate that Whittaker was remarkably accurate in concluding that local herb richness in these late-seral forests is explained to a large extent by three major abiotic gradients (soils, topography, and elevation), and in turn, by the effects of these gradients on tree densities and the numbers of individual herbs. However, while Whittaker also clearly appreciated the significance of large-scale evolutionary and biogeographic influences on community composition, he did not fully articulate the more recent concept that variation in the species richness of local communities could be explained in part by variation in the sizes of regional species pools. Our model of his data is among the first to use estimates of regional species pool size to explain variation in local community richness along productivity-related gradients. We find that regional pool size, combined with a modest number of other interacting abiotic and biotic factors, explains most of the variation in local herb richness in the Siskiyou biodiversity hotspot.  相似文献   
903.
The distribution of 152Eu between magnesium hydroxide bulk, colloids and solution has been assessed under alkaline conditions, such as those in nuclear fuel storage ponds. The colloidal phase has been characterised by two complementary methods: coupled ultrafiltration-ICP-AES and scanning electron microscopy. The quantity and the size distribution of the colloidal phase is strongly ionic strength-dependent. A decrease of the quantity of colloids, in particular the larger size ranges, has been observed with increasing ionic strength. Small colloids (1 kDa-10 kDa fraction) are predominant at all ionic strengths. The morphology of colloids, observed by field-emission gun scanning electron microscopy, appears to change from hexagonal prismatic (characteristic to the mineral) to spherical (energetically more favourable) as size decreases. The distribution of 152Eu between the solid and liquid/colloidal phases has been investigated at carbonate concentrations ranging from 0 to 10(-2) M by coupled ultrafiltration and gamma-spectrometry. Mg(OH)2 bulk appears to be a very strong sorbent for 152Eu, since complete sorption onto the bulk happens for carbonate concentrations as high as 10(-3) M. Scavenging of 152Eu by Mg(OH)2 colloids is negligible in the presence of Mg(OH)2 bulk. The distribution of 152Eu between liquid and colloidal phases has been investigated in the absence of bulk at various carbonate concentrations. A significant uptake of 152Eu by the colloids in solution has been observed, which decreases with increasing carbonate concentration. 152Eu appears to be mainly associated to the smallest colloids (1 kDa-10 kDa fraction). There is a strong correlation between the sorption properties and the surface area of the colloids.  相似文献   
904.
Water quality throughout south Florida has been a major concern for many years. Nutrient enrichment in the Indian River Lagoon (IRL) is a major surface water issue and is suggested as a possible cause of symptoms of ecological degradation. In 2005-06, water samples were collected weekly from seven sites along Ten Mile Creek (TMC), which drains into the Indian River Lagoon, to investigate and analyze spatial and temporal fluctuations of nutrients nitrogen (N) and phosphorus (P). The objective of this study was to understand the relationships among chlorophyll a concentration, nutrient enrichment and hydrological parameters in the surface water body.High median concentrations of total P (TP, 0.272 mg L(-1)), PO4-P (0.122 mg L(-1)), and dissolved total P (DTP, 0.179 mg L(-1)); and total N (TN, 0.988 mg L(-1)), NO3(-)-N (0.104 mg L(-1)), NH4+-N (0.103 mg L(-1)), and total Kjeldahl N (TKN, 0.829 mg L(-1)), were measured in TMC. The concentrations of TP, PO4-P, DTP, TN, NO3(-)-N, NH4+-N, and TKN were higher in summer and fall than in winter and spring. However, chlorophyll a and pheophytin concentrations during this period in TMC varied in the range of 0.000-60.7 and 0.000-17.4 microg L(-1), with their median values of 3.54 and 3.02 microg L(-1), respectively. The greatest mean chlorophyll a (10.3 microg L(-1)) and pheophytin (5.71 microg L(-1)) concentrations occurred in spring, while the lowest chlorophyll a (1.49 microg L(-1)) and pheophytin (1.97 mug L(-1)) in fall. High concentrations of PO4-P (>0.16 mg L(-1)), DTP (>0.24 mg L(-1)), NO3(-)-N (>0.15 mg L(-1)), NH4+-N (>0.12 mg L(-1)), and TKN (>0.96 mg L(-1)), occurred in the upstream of TMC, while high concentrations of chlorophyll a (>6.8 mug L(-l)) and pheophytin (>3.9 microg L(-l)) were detected in the downstream of TMC. The highest chlorophyll a (11.8 mug L(-l)) and pheophytin (6.06 microg L(-l)) concentrations, however, were associated with static and open water conditions. Hydrological parameters (total dissolved solid, electrical conductivity, salinity, pH, and water temperature) were positively correlated with chlorophyll a and pheophytin concentrations (P < 0.01) and these factors overshadowed the relationships between N and P concentrations and chlorophyll a under field conditions. Principal component analysis and the ratios of DIN/DP and TN/TP in the water suggest that N is the limiting nutrient factor for phytoplankton growth in the TMC and elevated N relative to P is beneficial to the growth of phytoplankton, which is supported by laboratory culture experiments under controlled conditions.  相似文献   
905.
We propose and evaluate a mode-of-action based test battery of low-complexity and in-vitro bioassays that can be used as a routine monitoring tool for sewage treatment efficiency and water quality assessment. The test battery comprises five bioassays covering five different modes of toxic action. The bioluminescence inhibition test with Vibrio fischeri and a growth rate inhibition test with the green algae Pseudokirchneriella subcapitata are measures of non-specific integrative effects. A second endpoint in the algae test, the specific inhibition of the efficiency of photosynthesis, gives an account of the presence of herbicides. An enzymatic assay covers an important aspect of insecticidal activity, the inhibition of the acetylcholine esterase activity. Estrogenic effects are assessed with the yeast estrogen screen (YES) and genotoxicity with the umuC test. Three field studies, each lasting six to seven consecutive days, were undertaken at a sewage treatment plant (STP) in Switzerland. Samples were collected in summer and late autumn, under dry and rainy conditions. None of the bioassays gave positive results with raw water in whole effluent toxicity testing. Therefore, water samples from various sites during wastewater treatment and from surface water were enriched with solid-phase extraction. The focus was on non-volatile compounds of average to moderate hydrophobicity, a range that includes most pesticides, biocides and pharmaceuticals. Various polar solid phases were evaluated for their extraction efficiency, disturbance by matrix components and overall performance. We finally selected a mixture of a polymeric sorbent and a C18-sorbent, Lichrolut EN and RP-18 or, alternatively, Empore SDB-RPS disks. All bioassays gave clear and robust responses with the SPE extracts. With the bioassay data the treatment efficiency of the STP can be assessed with respect to different modes of toxic action and accordingly different groups of micropollutants. Furthermore, the data allowed for a comparison between the effluent and the receiving river. In all bioassays the primary effluent had a strong effect and this effect was reduced after passing the STP. Treatment efficiency was high (typically over 90%) but varied from bioassay to bioassay, which is expected because each bioassay detects different types of micropollutants and therefore we cannot expect a common answer.  相似文献   
906.
The toxic equivalency concept is a widely applied method to express the toxicity of complex mixtures of compounds that act via receptor-mediated mechanisms such as induction of the arylhydrocarbon or estrogen receptors. Here we propose to extend this concept to baseline toxicity, using the bioluminescence inhibition test with Vibrio fischeri, and an integrative ecotoxicity endpoint, algal growth rate inhibition. Both bioassays were validated by comparison with literature data and quantitative structure-activity relationships (QSARs) for baseline toxicity were developed for all endpoints. The novel combined algae test, with Pseudokirchneriella subcapitata, allows for the simultaneous evaluation of specific inhibition of photosynthesis and growth rate. The contributions of specific inhibition of photosynthesis and non-specific toxicity could be differentiated by comparing the time and endpoint pattern. Photosynthesis efficiency, measured with the saturation pulse method after 2 h of incubation, served as indicator of specific inhibition of photosynthesis by photosystem II inhibitors. Diuron equivalents were defined as toxicity equivalents for this effect. The endpoint of growth rate over 24 h served to derive baseline toxicity equivalent concentrations (baseline-TEQ). By performing binary mixture experiments with reference compounds and complex environmental samples from a sewage treatment plant and a river, the TEQ concept was validated. The proposed method allows for easier interpretation and communication of effect-based water quality monitoring data and provides a basis for comparative analysis with chemical analytical monitoring.  相似文献   
907.
The relationships between soils attributes, soil carbon stocks and vegetation carbon stocks are poorly know in Amazonia, even at regional scale. In this paper, we used the large and reliable soil database from Western Amazonia obtained from the RADAMBRASIL project and recent estimates of vegetation biomass to investigate some environmental relationships, quantifying C stocks of intact ecosystem in Western Amazonia. The results allowed separating the western Amazonia into 6 sectors, called pedo-zones: Roraima, Rio Negro Basin, Tertiary Plateaux of the Amazon, Javari-Juruá-Purus lowland, Acre Basin and Rondonia uplands. The highest C stock for the whole soil is observed in the Acre and in the Rio Negro sectors. In the former, this is due to the high nutrient status and high clay activity, whereas in the latter, it is attributed to a downward carbon movement attributed to widespread podzolization and arenization, forming spodic horizons. The youthful nature of shallow soils of the Javari-Juruá-Purus lowlands, associated with high Al, results in a high phytomass C/soil C ratio. A similar trend was observed for the shallow soils from the Roraima and Rondonia highlands. A consistent east–west decline in biomass carbon in the Rio Negro Basin sector is associated with increasing rainfall and higher sand amounts. It is related to lesser C protection and greater C loss of sandy soils, subjected to active chemical leaching and widespread podzolization. Also, these soils possess lower cation exchangeable capacity and lower water retention capacity. Zones where deeply weathered Latosols dominate have a overall pattern of high C sequestration, and greater than the shallower soils from the upper Amazon, west of Madeira and Negro rivers. This was attributed to deeper incorporation of carbon in these clayey and highly pedo-bioturbated soils. The results highlight the urgent need for refining soil data at an appropriate scale for C stocks calculations purposes in Amazonia. There is a risk of misinterpreting C stocks in Amazonia when such great pedological variability is not taken into account.  相似文献   
908.
Residential, industrial, commercial, institutional and recreational activities discharge degradable and non-degradable wastes that reach the coastal water through rivers and cause coastal pollution. In the present study, mass transport of pollutants by Adyar and Cooum Rivers to the coastal water as a result of land-based discharges was estimated during low tide. The lowest and the highest flow recorded in Adyar varied from 514.59 to 2,585.08×106 litres/day. Similarly, the flow in Cooum River fluctuated between 266.45 and 709.34×106 litres/day. The present study revealed that the Adyar River transported 53.89–454.11 t/d of suspended solids, 0.06–19.64 t/d of ammonia, 15.95–123.24 t/d of nitrate and 0.4–17.86 t/d of phosphate, 0.004–0.09 kg/d of cadmium, 0.15–1.29 kg/d of lead and 3.03–17.58 kg/d of zinc to the coastal water owing to its high discharge. Similarly, the Cooum River transported 11.87–120.06 t/d of suspended solids, 0.08–58.7 t/d of ammonia, 6.11–29.25 t/d of nitrate and 0.66–10.73 t/d of phosphate, 0.003–0.021 kg/d of cadmium, 0.02–0.44 kg/d of lead and 1.36–3.87 kg/d of zinc. A higher concentration of suspended solids was noticed in post monsoon and summer months. An increase in the mass transport of ammonia, nitrate, phosphate in summer months (April and May) and an increase in the mass transport of cadmium, lead and zinc were observed in monsoon months (October–December) in both the rivers. Thus mass transport of pollutants study reveal that Cooum and Adyar Rivers in Chennai contribute to coastal pollution by transporting inorganic and trace metals significantly through land drainage.  相似文献   
909.
The study was conducted to characterize mineralogical and elemental composition of mine tailings in order to evaluate the environmental hazards, and identify the metal accumulation potential of native plant species from São Domingos mine, one of the long-term activity mines of the Iberian Pyrite Belt dating back to pre-Roman times. The mine tailings including soils and different plant species from São Domingos were analyzed for determination of tailings characteristics and chemical element contents in tailings and plants. The large amounts of mining wastes are causing significant adverse environment impacts due to acid mine drainage production and mobilization of potentially toxic metals and metalloids in residential areas, agricultural fields, downstreams, and rivers. The typical mineralogical composition is as follows: quartz, micas, K-feldspar, olivine-group minerals, magnetite, goethite, hematite, jarosite, and sulfides. The mine tailings were highly contaminated by As, Ag, Cr, Hg, Sn, Sb, Fe, and Zn; and among them, As and Sb, main contaminants, attained the highest concentrations except Fe. Arsenic has exhibited very good correlations with Au, Fe, Sb, Se, and W; and Sb with As, Au, Fe, Se, Sn, and W in tailings. Among the all plant species, the higher concentrations of all the metals were noted in Erica andevalensis, Erica australis, Echium plantagium, and Lavandula luisierra. Considering the tolerant behavior and abundant growth, the plant species Erica australis, Erica andevalensis, Lavandula luisierra, Daphne gnidium, Rumex induratus, Ulex eriocladus, Juncus, and Genista hirsutus are of major importance for the rehabilitation and recovery of degraded São Domingos mining area.  相似文献   
910.
Graphical models provide an important tool for facilitating communication between scientists, decision-makers, and statisticians—many complicated ecological processes can be described in terms of “box-and-arrow” conceptual diagrams (e.g., Shipley in Cause and correlation in biology: a user’s guide to path analysis, structural equations and causal inferences, Cambridge Universtiy Press, Cambridge, 2000; Clark and Gelfand TRENDS in Ecology and Evolution 21:375–380, 2006). In particular, problems in landscape ecology often involve modeling relationships among multiple physical and/or biological variables that may operate on differing spatial scales (e.g., Rossi et al. in Ecol Monographs 62:277–314, 1992; Legendre et al. in Ecography 25:601–615, 2002; Overmars et al. in Ecol Model 164:257–270, 2003; Brown and Spector in J Appl Ecol 45:1639–1648, 2008; Koniak and Noy-Meir in Ecol Model 220:1148–1158, 2008). These problems are inherently multivariate, though researchers commonly rely on univariate methods, such as spatial regression models, to address them. In this paper, we introduce a multivariate method—graphical spatial models—that extends path analysis to incorporate spatial autocorrelation in one or more variables in a directed graph. We show how both exogenous and endogenous ecological processes as defined by Legendre et al. (Ecography 25:601–615, 2002) and Lichstein et al. (Ecol Monographs 72:445–463, 2002) can be represented in a graph. Most importantly, we show how to translate graphs representing these ecological processes into statistically estimable models. We motivate our theoretical results using an example of stream health data from the Willamette Valley, Oregon. For these data we are interested in the spatial pattern within both riparian land use and an index of stream health, and whether there is an association between land use and stream health, after accounting for these spatial patterns. We use a graphical spatial model to address these ecological questions simultaneously. We find that the health of a stream decreases as the percent of developed land within a 120-m riparian buffer increases; interestingly, there is only evidence of spatial pattern within land use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号