Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m?2 h?1, and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m?2 h?1; no coal-fire area 19 and 32 ng m?2 h?1; and backfilling area 53 ng m?2 h?1. Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield.
The remediation of dioxin-contaminated soil of a specific coastal area previously employed for the manufacture of pentachlorophenol (PCP) in southern Taiwan’s Tainan City has attracted much attention of researchers there. This work addresses the possibility of providing an effective and environmentally friendly option for removing PCDD/Fs from soil in that field. Soil screening/sieving was first conducted to assess particle distribution. Fine sand was observed to be the major component of the soil, accounting for more than 60% of the total mass. A combination of ultrasonification and mechanical double-blade agitation was used to facilitate the washing of the soil using the biosurfactant anaerobic compost tea. More than 85 and 95% of total removal efficiencies were achieved for moderately and highly contaminated soils after 6 and 10 washing cycles, respectively, under ambient temperature, a soil/liquid ratio 1:2.5, 700 rpm, and over a relatively short duration. These results were achieved through the collision and penetration effects of this combined treatment as well as PCDD/F partitioning between the particles and anaerobic compost tea. This study represents the first to report the use of anaerobic compost tea solvent to wash soil highly contaminated by dioxin. It was concluded that anaerobic compost tea, rich in non-toxic bio-surfactants (e.g., alcohols, humic acids), can be used to improve bioavailability and bioactivity of the soil making bio-attenuation and full remediation more efficient. 相似文献
Environmental Science and Pollution Research - Municipal solid waste incineration (MSWI) fly ash has been classified as hazardous waste and needs treatment in an environmentally safe manner.... 相似文献
Environmental Science and Pollution Research - Microbial fuel cell (MFC) is a sustainable technology to treat cattle manure slurry (CMS) for converting chemical energy to bioelectricity. In this... 相似文献
Climate change is expected to be a major driving force of landscape in the coming decades.It will have a multitude of potential impacts that vary in intensity and effect according to region and sector.In the context of global warming,the climate of China has changed significantly in the recent 100 years.The reason for climate change in China is mainly due to irrational land use caused by human activities,which chiefly results in the rapid industrialization and urbanization process.Based on an assessment model,this research represents a picture of the impacts of climate change in six districts of Hangzhou region.The aim of this paper is to conclude,on the one hand,some of Hangzhou sensitivities in relation to the primary effects of climate change.On the other hand,a reflection is made on a methodology to formulate preconditions on a scientific basis for further research by design of integrated adaptation options for the future spatial developments in function to upgrade Hangzhou resilience in relation to climate change challenges. 相似文献
Toxicity evaluation is an important segment in sediment quality monitoring in order to protect aquatic organisms and human health. The purpose of this study is to assess the toxicity of sediments from three sediment cores in Yangtze River Estuary, China, using the zebrafish (Danio rerio) embryo tests. Fertilized zebrafish eggs were exposed to both whole sediments and sediment organic extracts prepared from collected sediments, in order to provide a comprehensive and realistic insight into the bioavailable toxicity potential of the sediments. As end points, development parameters (mortality, hatching rate, and abnormality) in the developing embryos were recorded during the 96-h exposure. The results showed that some samples increased mortality, inhibited the hatching of embryos, and induced morphological abnormalities. The embryonic toxicities presented serrated changes and irregular distribution with depth, which may be related to hydrodynamic effect and unstable environmental input. However, lethal and sub-lethal effects were more significant at the sub-surface sediments (10~40 cm), which indicated that the pollution is more serious in recent decades. 相似文献
In recent times, the prices of internationally traded metals have reached record highs and there is considerable uncertainty regarding their future. This phenomenon is partially driven by strong demand from a small number of emerging economies, such as China and India. This paper uses a long time-series (1900–2007) on 21 metals prices to investigate their properties, and presents unique features of their volatility, including a decomposition into within- and between-group components. If most volatility is commodity-specific rather than “global”, then metals-exporting dependent economies can smooth income via diversification. 相似文献
One strategy to combat nitrate (NO3-N) contamination in rivers is to understand its sources. NO3-N sources in the East Tiaoxi River of the Yangtze Delta Region were investigated by applying a 15N–18O dual isotope approach. Water samples were collected from the main channel and from the tributaries. Results show that high total N and NO3-N are present in both the main channel and the major tributaries, and NO3-N was one of the most important N forms in water. Analysis of isotopic compositions (δ18O, δD) of water suggests that the river water mainly originated from three tributaries during the sampling period. There was a wide range of δ15N-NO3 (?1.4 to 12.4 ‰) and a narrow range of δ18O-NO3 (3.7 to 9.0 ‰) in the main channel waters. The δ15N and δ18O-NO3 values in the upper, middle, and lower channels along the river were shifted as 8.2, 3.5, and 9.5 ‰, and 9.0, 4.2, and 6.0 ‰, respectively. In the tributary South Tiao, the δ15N and δ18O-NO3 values were as high as 9.5 and 7.0 ‰, while in the tributaries Mid Tiao and North Tiao, NO3-N in most of the samples had relatively low δ15N and δ18O-NO3 values from 2.3 to 7.5 ‰ and 4.7 to 7.0 ‰, separately. Our results also suggest that the dual isotope approach can help us develop the best management practice for relieving NO3-N pollution in the rivers at the tributary scale. 相似文献