首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   1篇
  国内免费   2篇
安全科学   1篇
废物处理   3篇
环保管理   22篇
综合类   7篇
基础理论   27篇
污染及防治   14篇
评价与监测   6篇
社会与环境   1篇
灾害及防治   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2011年   1篇
  2010年   10篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   4篇
  2000年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   3篇
  1980年   2篇
  1978年   2篇
排序方式: 共有82条查询结果,搜索用时 802 毫秒
51.
Dosskey, Michael G., Philippe Vidon, Noel P. Gurwick, Craig J. Allan, Tim P. Duval, and Richard Lowrance, 2010. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. Journal of the American Water Resources Association (JAWRA) 46(2):261-277. DOI: 10.1111/j.1752-1688.2010.00419.x Abstract: We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality. Our emphasis is on the role that riparian vegetation plays in protecting streams from nonpoint source pollutants and in improving the quality of degraded stream water. Riparian vegetation influences stream water chemistry through diverse processes including direct chemical uptake and indirect influences such as by supply of organic matter to soils and channels, modification of water movement, and stabilization of soil. Some processes are more strongly expressed under certain site conditions, such as denitrification where groundwater is shallow, and by certain kinds of vegetation, such as channel stabilization by large wood and nutrient uptake by faster-growing species. Whether stream chemistry can be managed effectively through deliberate selection and management of vegetation type, however, remains uncertain because few studies have been conducted on broad suites of processes that may include compensating or reinforcing interactions. Scant research has focused directly on the response of stream water chemistry to the loss of riparian vegetation or its restoration. Our analysis suggests that the level and time frame of a response to restoration depends strongly on the degree and time frame of vegetation loss. Legacy effects of past vegetation can continue to influence water quality for many years or decades and control the potential level and timing of water quality improvement after vegetation is restored. Through the collective action of many processes, vegetation exerts substantial influence over the well-documented effect that riparian zones have on stream water quality. However, the degree to which stream water quality can be managed through the management of riparian vegetation remains to be clarified. An understanding of the underlying processes is important for effectively using vegetation condition as an indicator of water quality protection and for accurately gauging prospects for water quality improvement through restoration of permanent vegetation.  相似文献   
52.
Vidon, Philippe, Craig Allan, Douglas Burns, Tim P. Duval, Noel Gurwick, Shreeram Inamdar, Richard Lowrance, Judy Okay, Durelle Scott, and Steve Sebestyen, 2010. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management. Journal of the American Water Resources Association (JAWRA) 46(2):278-298. DOI: 10.1111/j.1752-1688.2010.00420.x Abstract: Biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. These heterogeneous processes have recently been conceptualized as “hot spots and moments” of retention, degradation, or production. Nevertheless, studies investigating the importance of hot phenomena (spots and moments) in riparian zones have thus far largely focused on nitrogen (N) despite compelling evidence that a variety of elements, chemicals, and particulate contaminant cycles are subject to the influence of both biogeochemical and transport hot spots and moments. In addition to N, this review summarizes current knowledge for phosphorus, organic matter, pesticides, and mercury across riparian zones, identifies variables controlling the occurrence and magnitude of hot phenomena in riparian zones for these contaminants, and discusses the implications for riparian zone management of recognizing the importance of hot phenomena in annual solute budgets at the watershed scale. Examples are presented to show that biogeochemical process-driven hot spots and moments occur along the stream/riparian zone/upland interface for a wide variety of constituents. A basic understanding of the possible co-occurrence of hot spots and moments for a variety of contaminants in riparian systems will increase our understanding of the influence of riparian zones on water quality and guide management strategies to enhance nutrient or pollutant removal at the landscape scale.  相似文献   
53.
To determine the distribution and causes of extinction threat across functional groups of terrestrial vertebrates, we assembled an ecological trait data set for 18,016 species of terrestrial vertebrates and utilized phylogenetic comparative methods to test which categories of habitat association, mode of locomotion, and feeding mode best predicted extinction risk. We also examined the individual categories of the International Union for Conservation of Nature Red List extinction drivers (e.g., agriculture and logging) threatening each species and determined the greatest threats for each of the four terrestrial vertebrate groups. We then quantified the sum of extinction drivers threatening each species to provide a multistressor perspective on threat. Cave dwelling amphibians (p < 0.01), arboreal quadrupedal mammals (all of which are primates) (p < 0.01), aerial and scavenging birds (p < 0.01), and pedal (i.e., walking) squamates (p < 0.01) were all disproportionately threatened with extinction in comparison with the other assessed ecological traits. Across all threatened vertebrate species in the study, the most common risk factors were agriculture, threatening 4491 species, followed by logging, threatening 3187 species, and then invasive species and disease, threatening 2053 species. Species at higher risk of extinction were simultaneously at risk from a greater number of threat types. If left unabated, the disproportionate loss of species with certain functional traits and increasing anthropogenic pressures are likely to disrupt ecosystem functions globally. A shift in focus from species- to trait-centric conservation practices will allow for protection of at-risk functional diversity from regional to global scales.  相似文献   
54.
Reintroductions are important components of conservation and recovery programs for rare plant species, but their long-term success rates are poorly understood. Previous reviews of plant reintroductions focused on short-term (e.g., ≤3 years) survival and flowering of founder individuals rather than on benchmarks of intergenerational persistence, such as seedling recruitment. However, short-term metrics may obscure outcomes because the unique demographic properties of reintroductions, including small size and unstable stage structure, could create lags in population growth. We used time-to-event analysis on a database of unusually well-monitored and long-term (4–28 years) reintroductions of 27 rare plant species to test whether life-history traits and population characteristics of reintroductions create time-lagged responses in seedling recruitment (i.e., recruitment time lags [RTLs]), an important benchmark of success and indicator of persistence in reintroduced populations. Recruitment time lags were highly variable among reintroductions, ranging from <1 to 17 years after installation. Recruitment patterns matched predictions from life-history theory with short-lived species (fast species) exhibiting consistently shorter and less variable RTLs than long-lived species (slow species). Long RTLs occurred in long-lived herbs, especially in grasslands, whereas short RTLs occurred in short-lived subtropical woody plants and annual herbs. Across plant life histories, as reproductive adult abundance increased, RTLs decreased. Highly variable RTLs were observed in species with multiple reintroduction events, suggesting local processes are just as important as life-history strategy in determining reintroduction outcomes. Time lags in restoration outcomes highlight the need to scale success benchmarks in reintroduction monitoring programs with plant life-history strategies and the unique demographic properties of restored populations. Drawing conclusions on the long-term success of plant reintroduction programs is premature given that demographic processes in species with slow life-histories take decades to unfold.  相似文献   
55.
Extraction and use of a natural resource is assumed to affect the environment adversely. A perfect substitute for the resource can be supplied through a recycling process. Recycling may also have harmful effects on the environment, but to a smaller extent than extraction. The optimal path of extraction and recycling is studied under various assumptions about the environmental effects of recycling and the assimilative capacity of the environment. In particular, it is shown how the cost of recycling will affect initial resource extraction as well as the environmental quality at the time of resource exhaustion and in the long-run stationary state.  相似文献   
56.
Regional Environmental Change - Scenario planning is a flexible tool used to assess a broad range of plausible, relevant, divergent, and challenging futures, for short-term responses and long-term...  相似文献   
57.
58.
The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.  相似文献   
59.
This viewpoint explores, through a case study in Malawi, the application of collaborative technology tools to support National Environmental Strategy Development initiatives with the public and private sectors in Africa. A particular type of groupware, Group Support Systems, is introduced as a technology and approach that enables large groups of stakeholders to be involved in efficient and effective decision making. It helped the different ministries, community leaders, the private sector, NGOs, and different donors to find new and challenging opportunities for collaboration. The results of the case study show how an environmental strategy, including a prioritised plan of action, was developed and presented to the Ministry within three days. The most important lessons are identified. Participants to the presentation of the paper will be given hands-on experience using these tools.  相似文献   
60.
Data from remote-sensing platforms play an important role in monitoring environmental processes, such as the distribution of stratospheric ozone. Remote-sense data are typically spatial, temporal, and massive. Existing prediction methods such as kriging are computationally infeasible. The multi-resolution spatial model (MRSM) captures nonstationary spatial dependence and produces fast optimal estimates using a change-of-resolution Kalman filter. However, past data can provide valuable information about the current status of the process being investigated. In this article, we incorporate the temporal dependence into the process by developing a dynamic MRSM. An application of the dynamic MRSM to a month of daily total column ozone data is presented, and on a given day the results of posterior inference are compared to those for the spatial-only MRSM. It is apparent that there are advantages to using the dynamic MRSM in regions where data are missing, such as when a whole swath of satellite data is missing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号