首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4960篇
  免费   141篇
  国内免费   61篇
安全科学   272篇
废物处理   170篇
环保管理   1251篇
综合类   546篇
基础理论   1353篇
环境理论   8篇
污染及防治   1016篇
评价与监测   317篇
社会与环境   173篇
灾害及防治   56篇
  2023年   57篇
  2022年   55篇
  2021年   56篇
  2020年   63篇
  2019年   69篇
  2018年   123篇
  2017年   134篇
  2016年   180篇
  2015年   122篇
  2014年   160篇
  2013年   423篇
  2012年   232篇
  2011年   305篇
  2010年   202篇
  2009年   237篇
  2008年   262篇
  2007年   257篇
  2006年   227篇
  2005年   197篇
  2004年   181篇
  2003年   150篇
  2002年   140篇
  2001年   87篇
  2000年   94篇
  1999年   68篇
  1998年   74篇
  1997年   61篇
  1996年   63篇
  1995年   78篇
  1994年   75篇
  1993年   66篇
  1992年   58篇
  1991年   39篇
  1990年   35篇
  1989年   37篇
  1988年   30篇
  1987年   40篇
  1986年   40篇
  1985年   39篇
  1984年   44篇
  1983年   45篇
  1982年   54篇
  1981年   43篇
  1980年   31篇
  1979年   17篇
  1978年   29篇
  1977年   16篇
  1976年   13篇
  1972年   8篇
  1971年   9篇
排序方式: 共有5162条查询结果,搜索用时 15 毫秒
161.
Fresh beef cattle (Bos taurus) manure has traditionally been applied to cropland in southern Alberta, but there has been an increase in application of composted manure to cropland in this region. However, the quality of runoff under fresh manure (FM) versus composted manure (CM) has not been investigated. Our objective was to compare runoff quality under increasing rates (0, 13, 42, 83 Mg ha(-1) dry wt.) of FM and CM applied for two consecutive years to a clay loam soil cropped to irrigated barley (Hordeum vulgare L.). We determined total phosphorus (TP), particulate phosphorus (PP), dissolved reactive phosphorus (DRP), total nitrogen (TN), NH4-N, and NO3-N concentrations and loads in runoff after one (1999) and two (2000) applications of FM and CM. We found significantly (P < or = 0.05) higher TP, DRP, and NH4-N concentrations, and higher DRP and TN loads under FM than CM after 2 yr of manure application. The TP loads were also higher under FM than CM at the 83 Mg ha(-1) rate in 2000, and DRP loads were higher for FM than CM at this high rate when averaged over both years. Application rate had a significant effect on TP and DRP concentrations in runoff. In addition, the slope values of the regressions between TP and DRP in runoff versus application rate were considerably higher for FM in 2000 than for FM in 1999, and CM in both 1999 and 2000. Significant positive relationships were found for TP and DRP in runoff versus soil Kelowna-extractable P and soil water-extractable P for FM and CM in 2000, indicating that interaction of runoff with the soil controlled the release of P. Total P and DRP were the variables most affected by the treatments. Overall, our study found that application of CM rather than FM to cropland may lower certain forms of P and N in surface runoff, but this is dependent on the interaction with year, application rate, or both.  相似文献   
162.
Contamination by bacteria is a leading cause of impairment in U.S. waters, particularly in areas of livestock agriculture. We evaluated the effectiveness of several practices in reducing Escherichia coli levels in runoff from fields receiving liquid dairy (Bos taurus) manure. Runoff trials were conducted on replicated hay and silage corn (Zea mays L.) plots using simulated rainfall. Levels of E. coli in runoff were approximately 10(4) to 10(6) organisms per 100 mL, representing a significant pollution potential. Practices tested were: manure storage, delay between manure application and rainfall, manure incorporation by tillage, and increased hayland vegetation height. Storage of manure for 30 d or more consistently and dramatically lowered E. coli counts in our experiments, with longer storage providing greater reductions. Manure E. coli declined by > 99% after approximately 90 d of storage. On average, levels of E. coli in runoff were 97% lower from plots receiving 30-d-old and > 99% lower from plots receiving 90-d-old manure than from plots where fresh manure was applied. Runoff from hayland and cornland plots where manure was applied 3 d before rainfall contained approximately 50% fewer E. coli than did runoff from plots that received manure 1 d before rainfall. Hayland vegetation height alone did not significantly affect E. coli levels in runoff, but interactions with rainfall delay and manure age were observed. Manure incorporation alone did not significantly affect E. coli levels in cornland plot runoff, but incorporation could reduce bacteria export by reducing field runoff and interaction with rainfall delay was observed. Extended storage that avoids additions of fresh manure, combined with application several days before runoff, incorporation on tilled land, and higher vegetation on hayland at application could substantially reduce microorganism loading from agricultural land.  相似文献   
163.
Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer precipitation conditions, season of application did not affect soil NO3-N; in contrast, dormant season application increased soil NO3-N more than growing season application under wet spring-dry summer conditions.  相似文献   
164.
The growing recognition that climate change mitigation alone will be inadequate has led scientists and policymakers to discuss climate geoengineering. An experiment with a US sample found, contrary to previous research, that reading about geoengineering did not reduce conservatives’ skepticism about the existence of anthropogenic climate change. Moreover, depending on how it is framed, geoengineering can reduce support for mitigation among both conservatives and non-conservatives. When geoengineering is framed as a major solution, people worry less about climate change, leading to reduced mitigation support. When framed as disastrous, people perceived geoengineering as riskier, also leading to a decrease in mitigation support. A more moderate framing of geoengineering as a partial solution is less susceptible to moral hazard effects. Overall, results suggest that geoengineering will not lessen political polarization over anthropogenic climate change, and could undercut support for mitigation efforts. Instead, framing geoengineering as a small piece to solving a big puzzle seems to be the best strategy to weaken this potential moral hazard.  相似文献   
165.
Footprints for Sustainability: The Next Steps   总被引:21,自引:0,他引:21  
The concept of an ecological footprint is based on the understanding that every individual human appropriates a share of the productive and assimilative capacity of the biosphere. An ecological footprint corresponds to this exclusive biologically productive area that a defined population uses for all its resource requirements and wastes, and is expressed in terms of bioproductive space, with world-average productivity. Humanity's footprint or its aggregate ecological demand can only temporarily exceed the productive and assimilative capacity of the biosphere without liquidating and weakening the natural capital on which humanity depends fundamentally. Therefore, accounting tools for quantifying humanity's use of nature are essential for overall assessments of human impact as well as for planning specific steps towards a sustainable future.This paper discusses the strengths and weaknesses of the ecological footprint as an ecological accounting method, points out research needs for improvement of the analysis, and suggests potential new applications. The paper identifies ten new applications of the tool to make it applicable at various geographic scales and for a number of analytical and didactic purposes. Then nine methodological improvements are suggested that could refine the currently applied method, making assessments more sensitive to a larger number of ecological impacts. It concludes that many crucial questions pertinent to building a sustainable society can be addressed by current ecological footprint research. By making the method more complete, this tool could evolve from being largely of pedagogical use to become a strategic tool for policy analysis.  相似文献   
166.
167.
This study quantified the impact of bison and cattle grazing management practices on bare ground coverage at the watershed, riparian, and forested riparian scales within the Flint Hills ecoregion in Kansas. We tested for correlations between bare ground coverage and fluvial suspended sediment concentrations during base‐flow and storm‐flow events. We used remotely sensed imagery combined with field surveys to classify ground cover and quantify the presence of bare ground. Base‐flow water samples were collected bi‐monthly during rain‐free periods and 24 h following precipitation events. Storm‐flow water samples were collected on the rising limb of the hydrograph, using single‐stage automatic samplers. Ungrazed treatments contained the lowest coverage of bare ground at the watershed, riparian, and forested riparian scales. Bison treatments contained the highest coverage of bare ground at the watershed scale, while high‐density cattle treatments contained the highest coverage of bare ground at the riparian and forested riparian scales. In bison and cattle‐grazed treatments, a majority of bare ground was located near fence lines, watershed boundaries, and third‐ and fourth‐order stream segments. Inorganic sediment concentrations at base flow were best predicted by riparian bare ground coverage, while storm‐flow sediment concentrations were best predicted by watershed scale bare ground coverage.  相似文献   
168.
Generally, one expects evapotranspiration (ET) maps derived from optical/thermal Landsat and MODIS satellite imagery to improve decision support tools and lead to superior decisions regarding water resources management. However, there is lack of supportive evidence to accept or reject this expectation. We “benchmark” three existing hydrologic decision support tools with the following benchmarks: annual ET for the ET Toolbox developed by the United States Bureau of Reclamation, predicted rainfall‐runoff hydrographs for the Gridded Surface/Subsurface Hydrologic Analysis model developed by the U.S. Army Corps of Engineers, and the average annual groundwater recharge for the Distributed Parameter Watershed Model used by Daniel B. Stephens & Associates. The conclusion of this benchmark study is that the use of NASA/USGS optical/thermal satellite imagery can considerably improve hydrologic decision support tools compared to their traditional implementations. The benefits of improved decision making, resulting from more accurate results of hydrologic support systems using optical/thermal satellite imagery, should substantially exceed the costs for acquiring such imagery and implementing the remote sensing algorithms. In fact, the value of reduced error in estimating average annual groundwater recharge in the San Gabriel Mountains, California alone, in terms of value of water, may be as large as $1 billion, more than sufficient to pay for one new Landsat satellite.  相似文献   
169.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   
170.
Changes in land use and extreme rainfall trends can lead to increased flood vulnerability in many parts of the world, especially for urbanized watersheds. This study investigates the performance of existing stormwater management strategies for the Upper Yahara watershed in Dane County, WI to determine whether they are adequate to protect urban and suburban development from an extreme rainfall. Using extreme storm transposition, we model the performance of the stormwater infiltration practices required for new development under current county ordinances. We find during extreme rainfall the volume of post‐development runoff from impervious surfaces from a typical site would increase by over 55% over pre‐development conditions. We recommend the ordinance be strengthened to reduce vulnerability to flooding from future urban expansion and the likely increase in the magnitude and frequency of extreme storms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号