首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4960篇
  免费   141篇
  国内免费   61篇
安全科学   272篇
废物处理   170篇
环保管理   1251篇
综合类   546篇
基础理论   1353篇
环境理论   8篇
污染及防治   1016篇
评价与监测   317篇
社会与环境   173篇
灾害及防治   56篇
  2023年   57篇
  2022年   55篇
  2021年   56篇
  2020年   63篇
  2019年   69篇
  2018年   123篇
  2017年   134篇
  2016年   180篇
  2015年   122篇
  2014年   160篇
  2013年   423篇
  2012年   232篇
  2011年   305篇
  2010年   202篇
  2009年   237篇
  2008年   262篇
  2007年   257篇
  2006年   227篇
  2005年   197篇
  2004年   181篇
  2003年   150篇
  2002年   140篇
  2001年   87篇
  2000年   94篇
  1999年   68篇
  1998年   74篇
  1997年   61篇
  1996年   63篇
  1995年   78篇
  1994年   75篇
  1993年   66篇
  1992年   58篇
  1991年   39篇
  1990年   35篇
  1989年   37篇
  1988年   30篇
  1987年   40篇
  1986年   40篇
  1985年   39篇
  1984年   44篇
  1983年   45篇
  1982年   54篇
  1981年   43篇
  1980年   31篇
  1979年   17篇
  1978年   29篇
  1977年   16篇
  1976年   13篇
  1972年   8篇
  1971年   9篇
排序方式: 共有5162条查询结果,搜索用时 15 毫秒
181.
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world’s largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions.

Implications: The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.  相似文献   

182.
Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.  相似文献   
183.
While many studies and reviews into the practices conducted by industry and academia to recycle and remanufacture carbon fibre-reinforced plastic (CFRP) exist, to date no investigation exists which regards the correctness of the use of the terms recycling and remanufacturing. As such, this paper seeks to analyse the CFRP reuse industry’s attempt to recycle and remanufacture manufacturing waste CFRP and end-of-life (EOL) CFRP with an emphasis on the terminology used to describe these practices. Firstly, this paper presents a justification of the importance of using EOL terminology correctly; outlining the benefits and problems associated with using the correct and incorrect terminology. This paper finds that in the case of CFRP remanufacturing, terminology is being applied incorrectly and in the case of CFRP recycling, particular care should be taken when applying the term recycled to CFRP or stating that CFRP has been recycled. Further, this paper proposes new terminology (in keeping with EU directives) which could be adopted by industry and academia working in this area. This paper also finds that in the case of remanufacture, CFRP is incapable of being remanufactured.  相似文献   
184.
An innovative biodegradation test system was developed in order to fill the current gap for cost effective and environmentally relevant tools to assess marine biodegradability. Glass beads were colonized by a biofilm in an open flow-through system of seawater with continuous pre-exposure to Linear Alkylbenzene Sulfonate (LAS) (20 μg/L). Thereafter, such colonized beads were added as inoculum in different test systems. [14C]-LAS (5–100 μg/L) was added and primary and ultimate biodegradation were assessed. The bacterial density collected on the beads (109 bact./mL beads) was ca. 3 orders of magnitude higher than the typical seawater content. The LAS mineralization lag phase duration decreased from 55 to < 1 days and the mineralization extent increased from 53 to 90% as the colonized beads volume increased from 10 to 275 mL. This is the first demonstration of marine bacteria's ability to mineralize LAS. On the opposite, less than 13% LAS was mineralized in seawater only. The colonized beads possibly enhanced the probability to encounter the full degraders' consortium in a low volume of seawater (100 mL).  相似文献   
185.
This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine ‘no-improvement’ emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical ‘no-improvement’ pollution. It was estimated that environmental regulation avoided 20% of ‘no-improvement’ pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a− 1 for CO2 to 88% and 598 t a− 1 for SOx. Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SOx and NOx to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a− 1 for phosphorus emissions to water to 49% and 3143 t a− 1 for SOx emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector — through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and performance targets specified in environmental management plans. This compliant sector offers a positive, but not necessarily typical, case study of IPPC effectiveness.  相似文献   
186.
This study quantifies the disruption of zooplankton population fluctuations in relation to two magnitudes of fire retardant contamination events using artificial ponds as model systems. Population time series were analysed using redundancy analysis where time was modelled with a principal coordinate of neighborhood matrices approach that identified relevant scales of fluctuation frequencies. Analyses of temporal coherence provided insight whether population fluctuations correlated with system intrinsic or extrinsic forces. Responses to stress were species-specific and context-dependant. Contamination changed temporal structure in some species. These alterations were associated with an increased intrinsic control of dynamics. In some cases the magnitude of impact was unrelated to contamination severity. Some populations were less tolerant of pollution in the low relative to the high concentration treatment. Results suggest that population-level monitoring of degraded sites may be suboptimal because disparate population responses complicate the selection of specific sentinel organisms to monitor stress.  相似文献   
187.
Spatial gradients of vehicular emitted air pollutants were measured in the vicinity of three roadways in the Austin, Texas area: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway with significant truck traffic. A mobile monitoring platform was used to characterize the gradients of CO and NOx concentrations with increased distance from each roadway, while concentrations of carbonyls in the gas-phase and fine particulate matter mass and composition were measured at stationary sites upwind and at one (I-35 and FM-973) or two (SH-71) downwind sites. Regardless of roadway type or wind direction, concentrations of carbon monoxide (CO), nitric oxide (NO), and oxides of nitrogen (NOx) returned to background levels within a few hundred meters of the roadway. Under perpendicular wind conditions, CO, NO and NOx concentrations decreased exponentially with increasing distance perpendicular to the roadways. The decay rate for NO was more than a factor of two greater than for CO, and it comprised a larger fraction of NOx closer to the roadways than further downwind suggesting the potential significance of near roadway chemical processing as well as atmospheric dilution. Concentrations of most carbonyl species decreased with distance downwind of SH-71. However, concentrations of acetaldehyde and acrolein increased farther downwind of SH-71, suggesting chemical generation from the oxidation of primary vehicular emissions. The behavior of particle-bound organic species was complex and further investigation of the size-segregated chemical composition of particulate matter (PM) at increasing downwind distances from roadways is warranted. Fine particulate matter (PM2.5) mass concentrations, polycyclic aromatic hydrocarbons (PAHs), hopanes, and elemental carbon (EC) concentrations generally exhibited concentrations that decreased with distance downwind of SH-71. Concentrations of organic carbon (OC) increased from upwind concentrations immediately downwind of SH-71 and continued to increase further downwind from the roadway. This behavior may have primarily resulted from condensation of semi-volatile organic species emitted from vehicle sources with transport downwind of the roadway.  相似文献   
188.
We use a global chemical transport model (GEOS-Chem) with 1° × 1° horizontal resolution to quantify the effects of anthropogenic emissions from Canada, Mexico, and outside North America on daily maximum 8-hour average ozone concentrations in US surface air. Simulations for summer 2001 indicate mean North American and US background concentrations of 26 ± 8 ppb and 30 ± 8 ppb, as obtained by eliminating anthropogenic emissions in North America vs. in the US only. The US background never exceeds 60 ppb in the model. The Canadian and Mexican pollution enhancement averages 3 ± 4 ppb in the US in summer but can be occasionally much higher in downwind regions of the northeast and southwest, peaking at 33 ppb in upstate New York (on a day with 75 ppb total ozone) and 18 ppb in southern California (on a day with 68 ppb total ozone). The model is successful in reproducing the observed variability of ozone in these regions, including the occurrence and magnitude of high-ozone episodes influenced by transboundary pollution. We find that exceedances of the 75 ppb US air quality standard in eastern Michigan, western New York, New Jersey, and southern California are often associated with Canadian and Mexican pollution enhancements in excess of 10 ppb. Sensitivity simulations with 2020 emission projections suggest that Canadian pollution influence in the Northeast US will become comparable in magnitude to that from domestic power plants.  相似文献   
189.
Quantifying greenhouse gas (GHG) emissions from wetland ecosystems is a relatively new issue in global climate change studies. China has approximately 22% of the world's rice paddies and 38% of the world's rice production, which are crucial to accurately estimate the global warming potential (GWP) at regional scale. This paper reports an application of a biogeochemical model (DeNitrification and DeComposition or DNDC) for quantifying GWP from rice fields in the Tai-Lake region of China. For this application, DNDC is linked to a 1:50,000 soil database, which was derived from 1107 paddy soil profiles compiled during the Second National Soil Survey of China in the 1980–1990s. The simulated results show that the 2.34 Mha of paddy soil cultivated in rice–wheat rotation in the Tai-Lake region emitted about ?1.48 Tg C, 0.84 Tg N and 5.67 Tg C as CO2, N2O, and CH4 respectively, with a cumulative GWP of 565 Tg CO2 equivalent from 1982 to 2000. As for soil subgroups, the highest GWP (26,900 kg CO2 equivalent ha?1 yr?1) was linked to gleyed paddy soils accounting for about 4.4% of the total area of paddy soils. The lowest GWP (5370 kg CO2 equivalent ha?1 yr?1) was associated with submergenic paddy soils accounting for about 0.32% of the total area of paddy soils. The most common soil in the area was hydromorphic paddy soils, which accounted for about 53% of the total area of paddy soils with a GWP of 12,300 kg CO2 equivalent ha?1 yr?1. On a regional basis, the annual averaged GWP in the polder, Tai-Lake plain, and alluvial plain soil regions was distinctly higher than that in the low mountainous and Hilly soil regions. As for administrative areas, the average annual GWP of counties in Shanghai city was high. Conversely, the average annual GWP of counties in Jiangsu province was low. The high variability in soil properties throughout the Tai-Lake region is important and affects the net greenhouse gas emissions. Therefore, the use of detailed soil data sets with high-resolution digital soil maps is essential to improve the accuracy of GWP estimates with process-based models at regional and national scales.  相似文献   
190.
This paper explores the use of boosted regression trees to draw inferences concerning the source characteristics at a location of high source complexity. Models are developed for hourly concentrations of nitrogen oxides (NOX) close to a large international airport. Model development is discussed and methods to quantify model uncertainties developed. It is shown that good explanatory models can be developed and further, allowing for interactions between model variables significantly improves the model fits compared with non-interacting models. Methods are used to determine which variables exert most influence over predicted concentrations and to explore the NOX dependency for each. Model predictions are used to estimate aircraft take-off contributions to total concentrations of NOX and determine how these predictions are affected by annual variations in meteorological conditions and runway use patterns. Furthermore, the results relating to the aircraft contributions to total NOX concentration are compared with those from a more detailed independent field campaign. Finally, we find empirical evidence that plumes from larger aircraft disperse more rapidly from the point of release compared with smaller aircraft. The reasons for this behaviour and the implications are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号