首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
废物处理   1篇
环保管理   9篇
基础理论   20篇
污染及防治   3篇
评价与监测   3篇
社会与环境   3篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2003年   1篇
  2001年   1篇
排序方式: 共有39条查询结果,搜索用时 19 毫秒
31.
Suspension-feeding molluscs are important members of coastal communities and a large body of literature focuses on their feeding processes, including the efficiency of particle capture. Some molluscs, such as bivalves, capture individual picoplankton cells (0.2–2.0 μm) with a retention efficiency of less than 50%, leading to the assumption that such particles are not an important food resource. Picoplankton, however, are often concentrated in particle aggregates of much larger size. This study investigates the ability of suspension feeders to ingest picoplankton-size particles (0.2–2.0 μm) bound in marine aggregates. We fed clams (Mercenaria mercenaria), mussels (Mytilus edulis), oysters (Crassostrea virginica), scallops (Argopecten irradians) and slipper snails (Crepidula fornicata) 1.0- and 0.5-μm fluorescent particles (either polystyrene beads or bacteria) that were (1) dispersed in seawater, or (2) embedded within laboratory-made aggregates. Dispersed 10-μm beads were also delivered so that feeding activity could be determined. Ingested fluorescent particles were recovered in feces or isolated digestive glands and quantified. Results indicate that aggregates significantly enhance the ingestion of 1.0- and 0.5-μm beads by all species of bivalves, and enhance the ingestion of bacteria (greatest cell dimension ca. 0.6 μm) by all suspension feeders examined. Differences among species in their ability to ingest aggregates and picoplankton-size particles, however, were evident. Compared to mussels and clams, scallops and oysters ingested fewer aggregates with 1.0-μm beads or bacteria, and slipper snails ingested the most dispersed beads and bacteria. These differences may be a consequence of variations in gill structure and mechanisms of particle processing. Our data demonstrate that suspension feeders can ingest picoplankton-size particles that are embedded within aggregates, and suggest that such constituent particles may be an important food resource.  相似文献   
32.
Offspring size is strikingly variable within species. Although theory can account for variation in offspring size among mothers, an adaptive explanation for variation within individual broods has proved elusive. Theoretical considerations of this problem assume that producing offspring that are too small results in reduced offspring viability, but producing offspring that are too large (for that environment) results only in a lost opportunity for increased fecundity. However, logic and recent evidence suggest that offspring above a certain size will also have lower fitness, such that mothers face fitness penalties on either side of an optimum. Although theory assuming intermediate optima has been developed for other diversification traits, the implications of this idea for selection on intra-brood variance in offspring size have not been explored theoretically. Here we model the fitness of mothers producing offspring of uniform vs. variable size in unpredictably variable environments and compare these two strategies under a variety of conditions. Our model predicts that producing variably sized offspring results in higher mean maternal fitness and less variation in fitness among generations when there is a maximum and minimum viable offspring size, and when many mothers under- or overestimate this optimum. This effect is especially strong when the viable offspring size range is narrow relative to the range of environmental variation. To determine whether this prediction is consistent with empirical evidence, we compared within- and among-mother variation in offspring size for five phyla of marine invertebrates with different developmental modes corresponding to contrasting levels of environmental predictability. Our comparative analysis reveals that, in the developmental mode in which mothers are unlikely to anticipate the relationship between offspring size and performance, size variation within mothers exceeds variation among mothers, but the converse is true when optimal offspring size is likely to be more predictable. Together, our results support the hypothesis that variation in offspring size within broods can reflect an adaptive strategy for dealing with unpredictably variable environments. We suggest that, when there is a minimum and a maximum viable offspring size and the environment is unpredictable, selection will act on both the mean and variance of offspring size.  相似文献   
33.
Watershed‐scale hydrologic simulation models generally require climate data inputs including precipitation and temperature. These climate inputs can be derived from downscaled global climate simulations which have the potential to drive runoff forecasts at the scale of local watersheds. While a simulation designed to drive a local watershed model would ideally be constructed at an appropriate scale, global climate simulations are, by definition, arbitrarily determined large rectangular spatial grids. This paper addresses the technical challenge of making climate simulation model results readily available in the form of downscaled datasets that can be used for watershed scale models. Specifically, we present the development and deployment of a new Coupled Model Intercomparison Project phase 5 (CMIP5) based database which has been prepared through a scaling and weighted averaging process for use at the level of U.S. Geological Survey (USGS) Hydrologic Unit Code (HUC)‐8 watersheds. The resulting dataset includes 2,106 virtual observation sites (watershed centroids) each with 698 associated time series datasets representing average monthly temperature and precipitation between 1950 and 2099 based on 234 unique climate model simulations. The new dataset is deployed on a HydroServer and distributed using WaterOneFlow web services in the WaterML format. These methods can be adapted for downscaled General Circulation Model (GCM) results for specific drainage areas smaller than HUC‐8. Two example use cases for the dataset also are presented.  相似文献   
34.
Phosphorus (P) losses to surface waters can result in eutrophication. Some industrial by-products have a strong affinity for dissolved P and may be useful in reducing nonpoint P pollution with landscape-scale runoff filters. Although appreciable research has been conducted on characterizing P sorption by industrial by-products via batch isotherms, less data are available on P sorption by these materials in a flow-through context integral to a landscape P filter. The objectives of this study were to evaluate several industrial by-products for P sorption in a flow-through setting, to determine material chemical properties that have the greatest impact on P sorption in a flow-through setting, and to explore how retention time (RT) and P concentration affect P removal. Twelve materials were characterized for chemical properties that typically influence P removal and subjected to flow-through P sorption experiments in which five different RTs and P concentrations were tested. The impact of RT and P concentrations on P removal varied based on material chemical properties, mainly as a function of oxalate-extractable aluminum (Al), iron (Fe), and water-soluble (WS) calcium (Ca). Statistical analysis showed that materials elevated in oxalate-extractable Al and Fe and WS Ca and that were highly buffered above pH 6 were able to remove the most P under flow-through conditions. Langmuir sorption maximum values from batch isotherms were poorly correlated with and overestimated P removal found under flow-through conditions. Within the conditions tested in this study, increases in RT and inflow P concentrations increased P removal among materials most likely to remove P via precipitation, whereas RT had little effect on materials likely to remove P via ligand exchange.  相似文献   
35.
Several buildings were contaminated with Bacillus anthracis in the fall of 2001. These events required consideration of how to disinfect large indoor spaces for continued worker occupation. The interactions of gaseous disinfectants with indoor materials may inhibit the disinfection process, cause persistence of the disinfectant, and lead to possible byproduct formation and persistence. Methyl bromide (CH3Br) is a candidate for disinfection/deactivation of biological agents in buildings. In this study, 24 indoor materials were exposed to CH3Br for 16 hr at concentrations ranging from 100 to 2500 ppm in 48-L electropolished stainless steel chambers. CH3Br concentrations were measured during and after disinfection. Its interactions with materials were observed to be small, with nearly complete and rapid desorption. Between 3% and 8% of CH3Br adsorbed to four materials (office partition, ceiling tile, particle-board, and gypsum wallboard with satin paint), and the degree of adsorption decreased with increasing relative humidity. The percentage of adsorption to all other materials was <2%. This result suggests that when designing disinfection events with CH3Br, loss to indoor materials can be neglected in terms of disinfectant dose calculations. Possible reaction products were identified and/or quantified before and after exposure to CH3Br. Several monomethylated and dimethylated aliphatic compounds were observed in chamber air at low concentrations after the exposures of six materials to CH3Br. Concentration increases also occurred for chemicals that were observed to naturally off-gas from materials before exposure to CH3Br, suggesting that CH3Br may play a role in enhancing the natural off-gassing of chemicals, for example, by competitive displacement of compounds that already existed in the materials. The results described in this paper should facilitate the design of building disinfection systems involving CH3Br.  相似文献   
36.
37.
Experimental evolution is relevant to ecology because it can connect physiology, and in particular metabolism, to questions in ecology. The investigation of the linkage between the environment and the evolution of metabolism is tractable because these experiments manipulate a very simple environment to produce predictable evolutionary outcomes. In doing so, microbial selection experiments can examine the causal elements of natural selection: how specific traits in varying environments will yield different fitnesses. Here, we review the methodology of microbial evolution experiments and address three issues that are relevant to ecologists: genotype-by-environment interactions, ecological diversification due to specialization, and negative frequency-dependent selection. First, we expect that genotype-by-environment interactions will be ubiquitous in biological systems. Second, while antagonistic pleiotropy is implicated in some cases of ecological specialization, other mechanisms also seem to be at work. Third, while negative frequency-dependent selection can maintain ecological diversity in laboratory systems, a mechanistic (biochemical) analysis of these systems suggests that negative frequency dependence may only apply within a narrow range of environments if resources are substitutable. Finally, we conclude that microbial experimental evolution needs to avail itself of molecular techniques that could enable a mechanistic understanding of ecological diversification in these simple systems.  相似文献   
38.
Australia's Murray–Darling basin (MDB) water plan is an ambitious attempt to balance ecological, social and economic benefits, where a key aspect of the reform process has been recovery of water for environmental use. This paper focuses on a set of initiatives established by a local non-governmental organisation and an Indigenous community designed to engage with local values and priorities and incorporate them into this complex river basin governance system. Contrary to expectations that local and basin-scale interests and outcomes will diverge, the case studies reveal the ability for local groups to collaboratively manage both land and water resources to achieve locally important outcomes, and contribute to basin-scale outcomes. The analysis also highlights a progressive style of community-based environmental management for water management that utilises multiple institutional arrangements and planning pathways to protect the values that are important to local communities, and to nest those values within the broader effort to sustainably manage the basin's water resources.  相似文献   
39.
While debates about sustainable development tend to focus on national- and international-scale problems, sustainability programs and research generally focus on the regional, county, municipal, or even household level. Less research has focused on evaluating the benefits of pairing two cities (i.e., sister city partnerships) with different needs and capabilities to jointly enhance the potential for sustainable practices between the cities. Given shrinking state and federal budgets and the nascent national climate policy, how might US cities use existing resources to achieve greater levels of sustainability? This paper presents a new data-driven mathematical tool—the partnership assessment for intra-regional sustainability—that city planners can use to explore the prospects for improving sustainability practices by leveraging existing resources and establishing synergistic partnerships with neighboring cities. The efficacy of the tool is assessed through the presentation of a Southern California case study and the results of a psychological survey of Southern California residents. Results indicate that cities of different size and scale would benefit from synergistic sustainability programs that pool the resources and needs of both cities. The paper concludes with a discussion of potential societal implications, methodological issues, and barriers to implementation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号