The purpose of this study is to determine the impact of leachate recirculation on the degradation of municipal solid wastes (bioreactor concept). The study was carried out using columns containing approximately 50 kg of waste, in order to follow waste degradation over a limited time. Three types of waste were studied: fresh waste of standard composition, fresh waste of fermentable composition and some 8-yr-old waste extracted from a site in France. Measurement of the global parameters, such as chemical oxygen demand (COD), volatile acidity, alkalinity, leachate conductivity, methane potential of the wastes and biogas production monitoring (volume of CO2 and CH4 produced), were carried out. The quantity of oxydizable matter and biogas production was increased by the leachate recirculation, and the duration of the first degradation phases was reduced in all cases. Chloride, ammonium and organic pollution accumulation was observed according to the duration of recirculation. After 400 days of degradation, waste stabilization seemed to be reached for all of the recirculated columns (COD<300 mg/L O2, and methane potential reached). 相似文献
Abstract: A commonly held belief is that if people can benefit financially from enterprises that depend on nearby forests, reefs, and other natural habitats, then they will take action to conserve and sustainably use them. The Biodiversity Conservation Network brought together conservation and development organizations and local communities to systematically test this hypothesis across 39 conservation project sites in Asia and the Pacific. Each project implemented one or more community-based enterprises such as setting up an ecotourism lodge, distilling essential oils from wild plant roots, producing jams and jellies from forest fruits, harvesting timber, or collecting marine samples to test for pharmaceutical compounds. Each project team collected the biological, enterprise, and social data necessary to test the network's hypothesis. We present the results of this test. We found that a community-based enterprise strategy can lead to conservation, but only under limited conditions and never on its own. We summarize the specific conditions under which an enterprise strategy will and will not work in a decision chart that can be used by project managers to determine whether this strategy might make sense at their site. We also found that an enterprise strategy can be subsidized and still create a net gain that pays for conservation. Based on our experiences, we recommend developing "learning portfolios" that combine action and research to test other conservation strategies. 相似文献
With recent evidence that persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) are emerging in environmental media in some developing countries that otherwise have sparing production and usage history, it has become important to identify such contemporary source factors of PCBs and the risks this may pose, in line with the global consensus on POP management and elimination. The present study investigated contaminations from atmospheric PCBs in Ghana, deciphered source factors, and accessed risk of exposure to dioxin-like PCBs (DL-PCBs). Atmospheric PCBs were monitored by deployment of PUF-disk passive air samplers (PAS) at several sites across Ghana for 56 days. Atmospheric ∑190PCB concentration in Ghana ranged from 0.28 ng/m3 in Kumasi to 4.64 ng/m3 at Agbogbloshie, a suburb in Accra noted for informal electronic waste (e-waste) recycling activities. As high as 11.10 ng/m3 of PCB concentration was measured in plumes from uncontrolled open burning of e-wastes at Agbogbloshie. Applying statistical source characterization tools, it emerged that e-wastes were a major contributor to the environmental burden of atmospheric PCBs in Ghana. The risk of DL-PCB toxicity via inhalation in the Agbogbloshie area was 4.2 pg TEQ/day, within similar order of magnitude of an estimated risk of 3.85 pg TEQ/day faced by e-waste workers working averagely for 8 h per day. It is suggested that elimination of e-waste sites would help to significantly reduce PCB-related toxicity issues in Ghana.
Dendrimer-functionalized multi-walled carbon nanotubes (MWCNT) for heavy metal ion removal from wastewaters were developed. Triazole dendrimers (TD) were built directly onto the carbon nanotube surface by successive click chemistry reactions affording the zero- and first-generation dendrimer-functionalized MWCNT (MWCNT-TD1 and MWCNT-TD2). The Moedritzer-Irani reaction carried out on the amino groups present on the MWCNT-TD2 sample gave the corresponding α-aminophosphonate nanosystem MWCNT-TD2P. Both MWCNT-TD2 and MWCNT-TD2P nanosystems have been characterized by physical, chemical, and morphological analyses. Their chelating abilities towards the toxic metal ions Pb2+, Hg2+, and Ni2+ and the harmless Ca2+ ion have been experimentally evaluated in the two different sets of experiments and at the salt concentrations of 1 mg/mL or 1 μg/mL by inductively coupled plasma mass spectrometry (ICP-MS). The results of these studies pointed out the interesting chelating behavior for the phosphonated nanosystem towards the Hg2+ ion. The complexation mode of the best chelating system MWCNT-TD2P with mercury was investigated through density functional theory (DFT) calculations, suggesting a chelation mechanism involving the two oxygen atoms of the phosphate group. The synthesized dendrimers, supported on the multi-walled carbon nanotubes, have shown the potential to be used for the selective toxic metal ion removal and recovery. 相似文献
Membrane fouling is a major concern for the optimization of membrane bioreactor (MBR) technologies. Numerous studies have been led in the field of membrane fouling control in order to assess with precision the fouling mechanisms which affect membrane resistance to filtration, such as the wastewater characteristics, the mixed liquor constituents, or the operational conditions, for example. Worldwide applications of MBRs in wastewater treatment plants treating all kinds of influents require new methods to predict membrane fouling and thus optimize operating MBRs. That is why new models capable of simulating membrane fouling phenomenon were progressively developed, using mainly a mathematical or numerical approach. Faced with the limits of such models, artificial neural networks (ANNs) were progressively considered to predict membrane fouling in MBRs and showed great potential. This review summarizes fouling control methods used in MBRs and models built in order to predict membrane fouling. A critical study of the application of ANNs in the prediction of membrane fouling in MBRs was carried out with the aim of presenting the bottlenecks associated with this method and the possibilities for further investigation on the subject. 相似文献
Heavy metal contamination is a long-standing and very well-known public health problem, and its exposure can cause damage to several organs of human body, especially on the central nervous system of young children and teenagers. The aim of this article is to evaluate lead, cadmium, and manganese contamination in 125 children from 6 to 13 years old living in contaminated areas during the period from 2006 to 2009 (São Vicente, Cubatão Downtown, Bertioga and Cubatão Pilões/Água Fria). This estuary area is the most important example of environmental degradation by chemicals from industrial sources. This is a cross-sectional study through clinical examinations and dental enamel tests. All mothers from these children lived in the area since before the pregnancy. Lead, cadmium, and manganese levels (μg/g) were measured on dental enamel samples through graphite furnace atomic absorption spectrometry, searching for the occurrence of heavy metals. The mean lead concentrations were 139.48 μg/g in Cubatão Pilões/Água Fria, 170.45 μg/g in Cubatão Downtown, 213.52 μg/g in São Vicente, and 151.89 μg/g in Bertioga. The mean cadmium concentrations were 10.83 μg/g in Cubatão Pilões/Água Fria, 12.58 μg/g in Cubatão Downtown, 10.92 μg/g in São Vicente, and 14.57 μg/g in Bertioga. The mean manganese concentrations were 23.49 μg/g in Cubatão Pilões/Água Fria, 30.90 μg/g in Cubatão Downtown, 41.46 μg/g in São Vicente, and 42.00 μg/g in Bertioga. Dental surface enamel may be used as an efficient biomarker of past environmental exposure to lead, manganese, and cadmium which are associated to well-known sources of heavy metal contamination. The results suggest that the evaluated children were exposed to sources of lead, cadmium, and manganese since before their conceptions. Although Bertioga initially was chosen as a control area of this study, it was also was verified to have heavy metal contamination on examined children. 相似文献
Research on the influence of biosurfactants on the efficiency of in situ bioremediation of contaminated soil is continuously growing. Despite the constant progress in understanding the mechanisms involved in the effects of biosurfactants, there are still many factors that are not sufficiently elucidated. There is a lack of research on autochthonous or exogenous microbial metabolism when biostimulation or bioaugmentation is carried out to produce biosurfactants at contaminated sites. In addition, studies on the application of techniques that measure the biosurfactants produced in situ are needed. This is important because, although the positive influence of biosurfactants is often reported, there are also studies where no effect or negative effects have been observed. This review aimed to examine some studies on factors that can improve the production of biosurfactants in soils during in situ bioremediation. Moreover, this work reviews the methodologies that can be used for measuring the production of these biocomposts. We reviewed studies on the potential of biosurfactants to improve the bioremediation of hydrocarbons, as well as the limitations of methods for the production of these biomolecules by microorganisms in soil. 相似文献
A laboratory investigation of UV-C effects was conducted over a 62-h period: a much higher dose than in classic UV-C treatment was applied to five pigments and two painting binders used by prehistoric humans. Colorimetric parameters were compared to a control to see if UV-C can change pigment and binder color. Infrared spectroscopy, scanning electron microscopy, inductively coupled plasma and X-ray crystallography were also carried out to confirm colorimetric measurement. In order to understand how microorganism may physically deteriorate paintings, limestone blocks were painted and monitored until their complete colonization by algae, cyanobacteria, fungi and/or mosses. The results show that UV-C has no effect on mineral compounds. Conversely, it is noteworthy that binder color changed under both UV-C light conditions as well as in visible light. Concerning painted blocks, a fast proliferation has been observed with deterioration of the paintings. These results show the high importance of treating biofilm as soon as possible. Moreover, these findings may be a promising avenue inducing cave managers to use friendly UV-C light to treat contaminated cave paintings and also in the prevention of biodeterioration by lampenflora. 相似文献
The sources of submicrometer particulate matter (PM1) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM1 mass concentrations (average 11.6 ± 5.7 µg/m3) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM1 (average 4.4 ± 3.3 µg/m3), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA.
Implications: This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM1) in greater Houston. The data set indicates substantial spatial variations in PM1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM1. These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM1 from automobiles and industry but also to reduce the emissions of important secondary PM1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone. 相似文献