首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   1篇
  国内免费   3篇
安全科学   10篇
废物处理   25篇
环保管理   25篇
综合类   51篇
基础理论   40篇
污染及防治   138篇
评价与监测   46篇
社会与环境   21篇
灾害及防治   1篇
  2023年   7篇
  2022年   13篇
  2021年   17篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   24篇
  2015年   13篇
  2014年   17篇
  2013年   40篇
  2012年   27篇
  2011年   28篇
  2010年   22篇
  2009年   18篇
  2008年   20篇
  2007年   12篇
  2006年   26篇
  2005年   11篇
  2004年   19篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1985年   1篇
  1964年   1篇
排序方式: 共有357条查询结果,搜索用时 31 毫秒
121.
The photocatalytic elimination of microorganisms from indoor air in realistic conditions and the feasibility of simultaneous elimination of chemical contaminants have been studied at laboratory scale. Transparent polymeric monoliths have been coated with sol-gel TiO(2) films and used as photocatalyst to treat real indoor air in a laboratory-scale single-step annular photocatalytic reactor. The analytical techniques used to characterize the air quality and analyze the results of the photocatalytic tests were: colony counting, microscopy and PCR with subsequent sequencing for microbial quantification and identification; automated thermal desorption coupled to gas chromatography with mass spectrometry detection for chemical analysis. The first experiments performed proved that photocatalysis based on UVA-irradiated TiO(2) for the reduction of the concentration of bacteria in the air could compete with the conventional photolytic treatment with UVC radiation, more expensive and hazardous. Simultaneously to the disinfection, the concentration of volatile organic compounds was greatly reduced, which adds value to this technology for real applications. The fungal colony number was not apparently modified.  相似文献   
122.

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25?mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10?mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25?mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.  相似文献   
123.

Background

We monitored urinary benzene excretion to examine factors affecting benzene uptake in a sample of the general population living near a petrochemical plant.

Methods

Our study population included 143 subjects: 33 petrochemical plant workers (W) with low level occupational benzene exposure; 30 residents in a small town 2 km from the plant (2kmR); 26 residents in a second small town located 2 to 4 km from the plant (4kmR); and 54 urban residents 25 km from the plant (25kmR). Exposure to benzene was evaluated by personal air sampling during one work-shift for the W group, and from 8.00 to 20:00 for general population subgroups, and by urinary benzene (BEN-U).

Results

Median airborne benzene exposure was 25, 9, 7 and 6 μg/m3 benzene among the W, 2kmR, 4kmR, and 25kmR subgroups, respectively; the highest level was found among the workers, while there was no significant difference among the other groups. Median BEN-U was 2 to 14-fold higher in smokers compared to non-smokers; among non-smokers BEN-U was the highest in W (median 236 ng/L), and lower in the 2kmR (48 ng/L) and 4kmR (63 ng/L) subgroups than in the 25kmR (120 ng/L) subgroup. A multiple linear regression analysis, explaining up to 73% of BEN-U variability, confirmed that active smoking and airborne benzene most strongly affected BEN-U. Among the non-smoking, non-occupationally exposed study subjects, a positive association was found between BEN-U and the distance of residence from the plant. This association was explained by increased exposure to urban traffic emissions in the study group residing at a greater distance from the plant. Environmental tobacco smoke had a marginally positive role.

Conclusion

Among factors affecting benzene uptake in non-occupationally exposed individuals, urban residence contributes to benzene exposure more than residing in close proximity to a petrochemical plant.  相似文献   
124.
Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)(3)) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)(3)), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs.  相似文献   
125.
Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO2) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO2 appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children’s exposures to these pollutants vary based on the location of their school.  相似文献   
126.
Pyrolysis and combustion runs at 850°C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.  相似文献   
127.
Methyl tert-butyl ether (MTBE) and benzene are added to gasoline to improve the combustion process and are found in the urban environment as a consequence of vehicular traffic. Herein we evaluate urinary MTBE (MTBE-U) and benzene (BEN-U) as biomarkers of exposure to urban traffic. Milan urban policemen (130 total) were investigated in May, July, October, and December for a total of 171 work shifts. Personal exposure to airborne benzene and carbon monoxide (CO), and atmospheric data, were measured during the work shift, while personal characteristics were collected by a questionnaire. A time/activity diary was completed by each subject during the work shift. Spot urine samples were obtained for the determination of MTBE-U and BEN-U. Median personal exposure to CO and airborne benzene were 3.3 mg/m(3) and 9.6 μg/m(3), respectively; median urinary levels in end-of-shift (ES) samples were 147 ng/L (MTBE-U) and 207 ng/L (BEN-U). The time spent on traffic duty at crossing was about 40% of work time. Multiple linear regression models, taking into account within-subject correlations, were applied to investigate the role of urban pollution, atmospheric conditions, job variables and personal characteristics on the level of biomarkers. MTBE-U was influenced by the month of sampling and positively correlated to the time spent in traffic guarding, CO exposure and atmospheric pressure, while negatively correlated to wind speed (R(2) for total model 0.63, P<0.001). BEN-U was influenced by the month and smoking habit, and positively correlated to urinary creatinine; moreover, an interaction between CO and smoking was found (R(2)=0.62, P<0.001). These results suggest that MTBE-U is a reliable marker for assessing urban traffic exposure, while BEN-U is determined mainly by personal characteristics.  相似文献   
128.
Many substances related to human activities end up in wastewater and accumulate in sewage sludge. So far, there is only one extensive survey on the occurrence of UV filter residues in sewage sludge. However, more data are required to draw a reliable picture of the fate and effects of these compounds in the environment. This study attempts to fill this gap through the determination of selected UV filters and derivatives namely 4-methylbenzylidenecamphor, benzophenone-3, octocrylene, ethylhexylmethoxycinnamate, ethylhexyldimethyl PABA, 4-hydroxybenzophenone, 2,4-dihydroxybenzophenone, and 4,4′-dihydroxybenzophenone in treated sewage sludge.The target compounds were extracted using pressurized liquid extraction and after this, determined by ultra high resolution liquid chromatography-tandem mass spectrometry. The determination was fast and sensitive, affording limits of detection lower than 19 ng g−1 dry weight (dw) except for 2,4-dihydroxybenzophenone (60 ng g−1 dw). Good recovery rates, especially given the high complexity of sludge matrix (between 70% and 102% except for 2,4-dihydroxybenzophenone (30%)) were achieved.The application of developed method allowed reporting for the first time the occurrence of two major degradation products of benzophenone-3 that have estrogenic activity in sewage sludge: 4,4′-dihydroxybenzophenone (in 5/15 WWTPs) and 4-hydroxybenzophenone (in 1/15 WWTPs). Results revealed the presence of UV filters in 15 wastewater treatment plants in Catalonia (Spain) at concentrations ranging from 0.04 to 9.17 μg g−1 dw.  相似文献   
129.
Salati S  Adani F  Cosentino C  Torri G 《Chemosphere》2008,70(11):2092-2098
13C CP-MAS NMR spectroscopy is a technique that has proved to be useful in studying soil organic matter (SOM). Nevertheless, NMR spectra exhibit a weak signal and have very low resolution due to: the low natural abundance of 13C (1.1 % of C) in SOM, the generally low SOM content of soils, and the presence of paramagnetic impurities. This paper studies the effects of soil chemical pre-treatments on 13CP-MAS NMR spectra quality and spectra representativity i.e. soil C mass balance.

After chemical pre-treatment to increase total organic carbon (TOC) content and C/Fe ratio, eight soils characterized by different levels of organic carbon content and C/Fe ratios were studied using 13CP-MAS NMR. Moreover, where chemical treatments were not applicable due to high carbon losses, the number of 13CP-MAS NMR scans was increased in order to obtain satisfactory spectra.

Results show that chemical pre-treatment of soils with C/Fe > 1 caused high C losses. Bulk soils were therefore studied by increasing the number of 13CP-MAS NMR scans. Acceptable spectra were obtained from 8K scans (1K = 1024 transient). On the other hand, even when a large number of scan (32K) are used, soil with C/Fe < 1 cannot be studied. As these soils are characterized by low C losses after HCl treatments (range of 2.9–25.4%), a pre-treatment of at least 1.39 mol l−1 HCl removes excess Fe and at the same time increases C/Fe ratio resulting in 32K scans providing good spectra.  相似文献   

130.
Trace organic chemicals contamination in ground water recharge   总被引:1,自引:0,他引:1  
Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号