首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
  国内免费   1篇
废物处理   3篇
环保管理   6篇
综合类   16篇
基础理论   12篇
污染及防治   34篇
评价与监测   9篇
社会与环境   2篇
  2023年   2篇
  2022年   4篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   6篇
  2013年   8篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   8篇
  2006年   5篇
  2004年   3篇
  2003年   1篇
  1992年   1篇
排序方式: 共有82条查询结果,搜索用时 506 毫秒
61.
Environmental Science and Pollution Research - Alpine lakes are extreme ecosystems located in remote areas and populated by few but well-adapted species. Because of their remote location, they are...  相似文献   
62.
Environmental Science and Pollution Research - Due to its peculiarity to accumulate environmental contaminants, the osprey Pandion haliaetus is a sentinel species for the biomonitoring of...  相似文献   
63.
In this work, we have analyzed the changes in the protein expression profile elicited by chromium (Cr) exposure in the freshwater green alga Pseudokirchneriella subcapitata, a well known bio-indicator of water pollution. We tested two experimental conditions, namely 0.2 and 1 ppm of potassium dichromate; this concentration range includes the environmentally-relevant concentrations. Results show that neither concentration of potassium dichromate tested inhibited algal growth. However, the proteomic approach allowed the identification of relevant modifications in protein expression. In fact, among 800 protein spots detected by two-dimensional electrophoresis, 16 Cr-regulated proteins, including predicted and novel ones, were identified using tandem mass spectromic protein analysis.The results demonstrate a Cr-specific action in altering several photosynthetic proteins, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), RuBisCO activase, Light Harvesting Chla/b protein complex, and stress related Chla/b binding protein1. Although Cr toxicity with respect to photosynthesis has been already documented, here we have identified, for the first time, the target proteins of this toxicity. Cr also induced a modulation of some proteins involved in the metabolism of the amino acids glutamine, arginine and methionine. These data are supported by changes in cellular polyamine (PA) accumulation. Present findings provide new insight into the molecular mechanisms underlying Cr toxicity in P. subcapitata.  相似文献   
64.
65.
66.
67.
68.
BACKGROUND: The photolysis of pesticides is of high current interest since light is one of the most important abiotic factors which are responsible for the environmental fate of these substances and may induce their conversion into noxious products. The action of light can also be mediated by oxygen and synthetic or naturally occurring substances which act as sensitizers. Our objective in this study was to investigate the photochemical behaviour of the systemic fungicide furalaxyl in the presence of oxygen and various sensitizers, and to compare the toxicity of the main photoproduct(s) to that of the parent compound. Previous reports on the direct photolysis of the pesticide demonstrated a very slow degradation and the only identified photoproducts were N-2,6-xylyl-D,L-alaninare and 2,6-dimethylaniline. METHODS: Solutions of furalaxyl in CH3CN were photooxygenate using a 500W high-pressure mercury lamp (through a Pyrex glass filter, lambda>300 nm) or a 650W halogen lamp or sunlight and the proper sensitizer. When sunlight was used, aqueous solutions were employed. The photodegradation was checked by NMR and/or GC-MS. The photoproducts were spectroscopically evidenced and, when possible, isolated chromatographically. Acute toxicity tests were performed on the rotifer Brachionus calyciflorus, the crustacean cladoceran Daphnia magna and the anostracan Thamnocephalus platyurus, while chronic toxicity tests (sublethal endpoints) comprised a producer, the alga Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia, as a consumer. RESULTS AND DISCUSSION: In the presence of both oxygen and sensitizer, furalaxyl underwent rapid photochemical transformations mainly to N-disubstituted formamide, maleic anhydride and a 2(5H)-furanone derivative. The formation of these products was rationalized in terms of a furan endoperoxide intermediate derived from the reaction of furalaxyl with active dioxygenated species (singlet oxygen, superoxide anion or ground state oxygen). The 2(5H)-furanone exhibited a higher toxicity than the parent compound. CONCLUSION: This work reports the first data on the photosensitized oxygenation of furalaxyl with evidence of the high tendency of the pesticide to undergo photodegradation under these conditions leading, among other things, to a 2(5H)-furanone, which is more toxic than the starting furalaxyl towards aquatic organisms. RECOMMENDATIONS AND OUTLOOK: Investigation highlights that the photolytic fate of a pesticide, although quite stable to direct photoreaction due to its low absorption of solar radiation at ground level, can be significantly influenced in the environment by the presence of substances with energy or electron-transfer properties as natural dyes, e.g. chlorophyll, or synthetic pollutants, e.g. polycyclic aromatic hydrocarbons (PAH).  相似文献   
69.
The transmission of water-borne pathogens typically occurs by a faecal–oral route, through inhalation of aerosols, or by direct or indirect contact with contaminated water. Previous molecular-based studies have identified viral particles of zoonotic and human nature in surface waters. Contaminated water can lead to human health issues, and the development of rapid methods for the detection of pathogenic microorganisms is a valuable tool for the prevention of their spread. The aims of this work were to determine the presence and identity of representative human pathogenic enteric viruses in water samples from six European countries by quantitative polymerase chain reaction (q-PCR) and to develop two quantitative PCR methods for Adenovirus 41 and Mammalian Orthoreoviruses. A 2-year survey showed that Norovirus, Mammalian Orthoreovirus and Adenoviruses were the most frequently identified enteric viruses in the sampled surface waters. Although it was not possible to establish viability and infectivity of the viruses considered, the detectable presence of pathogenic viruses may represent a potential risk for human health. The methodology developed may aid in rapid detection of these pathogens for monitoring quality of surface waters.  相似文献   
70.

Introduction and background

Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time).

Discussion and perspectives

These topics were addressed during the workshop entitled “Aquatic Macrophyte Risk Assessment for Pesticides” (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号