首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4590篇
  免费   31篇
  国内免费   6篇
安全科学   68篇
废物处理   158篇
环保管理   199篇
综合类   1744篇
基础理论   965篇
环境理论   8篇
污染及防治   1097篇
评价与监测   205篇
社会与环境   177篇
灾害及防治   6篇
  2019年   42篇
  2018年   81篇
  2017年   83篇
  2016年   101篇
  2015年   91篇
  2014年   117篇
  2013年   203篇
  2012年   113篇
  2011年   190篇
  2010年   131篇
  2009年   134篇
  2008年   211篇
  2007年   189篇
  2006年   160篇
  2005年   128篇
  2004年   115篇
  2003年   111篇
  2002年   143篇
  2001年   89篇
  2000年   80篇
  1999年   60篇
  1998年   48篇
  1997年   43篇
  1996年   46篇
  1995年   52篇
  1994年   52篇
  1993年   35篇
  1992年   47篇
  1991年   37篇
  1990年   37篇
  1989年   32篇
  1986年   33篇
  1981年   34篇
  1976年   33篇
  1973年   32篇
  1968年   31篇
  1967年   41篇
  1966年   37篇
  1965年   52篇
  1964年   45篇
  1963年   51篇
  1962年   37篇
  1961年   56篇
  1960年   47篇
  1959年   49篇
  1958年   57篇
  1957年   48篇
  1956年   52篇
  1955年   52篇
  1954年   47篇
排序方式: 共有4627条查询结果,搜索用时 234 毫秒
351.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   
352.
The Tubarão River rises in Santa Catarina, Brazil, and has been historically affected by coal mining activities around its springhead. To evaluate its water conditions, an investigation regarding a possible decontamination gradient associated with the increased river flow toward the estuary, as well as the influence of seasonality over this gradient was performed through a series of biomarkers (vitellogenin, comet assay, lipid peroxidation, protein carbonylation, gluthatione, gluthatione S-transferase, acetylcholinesterase, light microscopy in liver, and scanning electron microscopy in gills) and chemical analysis (polycyclic aromatic hydrocarbons (PAHs) in bile and metal analysis in sediment) in the cichlid Geophagus brasiliensis. Two collections (summer and winter) were made in four distinct sites along the river, while sediments were sampled between those seasons. As expected, the contamination linked exclusively to mining activities was not observed, possibly due to punctual inputs of contaminants. The decontamination gradient was not observed, although seasonality seemed to have a critical role in the responses of biomarkers and availability of contaminants. In the summer, the fish presented higher histopathological damages and lower concentrations of PAHs, while in the winter they showed both higher genetic damage and accumulation of PAHs. The Tubarão suffers impacts from diverse activities, representing health risks for wild and human populations.  相似文献   
353.
Laboratory toxicity tests are a key component of the aquatic risk assessments of chemicals. Toxicity tests with Myriophyllum spicatum are conducted based on working procedures that provide detailed instructions on how to set up the experiment, e.g., which experimental design is necessary to get reproducible and thus comparable results. Approved working procedures are established by analyzing numerous toxicity tests to find a compromise between practical reasons (e.g., acceptable ranges of ambient conditions as they cannot be kept completely constant) and the ability for detecting growth alterations. However, the benefit of each step of a working procedure, e.g., the random repositioning of test beakers, cannot be exactly quantified, although this information might be useful to evaluate working procedures. In this paper, a growth model of M. spicatum was developed and used to assess the impact of temperature and light fluctuations within the standardized setup. It was analyzed how important it is to randomly reassign the location of each plant during laboratory tests to keep differences between the relative growth rates of individual plants low. Moreover, two examples are presented on how modeling can give insight into toxicity testing. Results showed that randomly repositioning of individual plants during an experiment can compensate for fluctuations of light and temperature. A method is presented on how models can be used to improve experimental designs and to quantify their benefits by predicting growth responses.  相似文献   
354.
The fate of 14C-labeled sulfadiazine (14C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (Ap horizon of loamy sand, orthic luvisol; Ap horizon of silt loam, cambisol) amended with fresh and aged (6 months) 14C-manure [40 g kg?1 of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with 14C-SDZ. Mineralization of 14C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable 14C (ethanol-water, 9:1, v/v) decreased with time to 4–13% after 218 days of incubation with fresh and aged 14C-manure and both soils. Non-extractable residues were the main route of the fate of the 14C-SDZ residues (above 90% of total recovered 14C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the 14C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl2 solution) also decreased with increasing incubation period (5–7% after 218 days). Due to thin-layer chromatography (TLC), 500 μg of 14C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh 14C-manure, and about 50 μg kg?1 after 218 days. Bioavailable 14C-SDZ portions present in the CaCl2 extracts were about 350 μg kg?1 with amendment. Higher concentrations were initially detected with aged 14C-manure (ethanol-water extracts: 1,920 μg kg?1; CaCl2 extracts: 1,020 μg kg?1), probably due to release of 14C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the 14C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble 14C-SDZ residues contained in 14C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   
355.
Cobalt and silver are toxic for cells, but mechanisms of this toxicity are largely unknown. Analysis of Corynebacterium glutamicum proteome from cells grown in control and cobalt or silver enriched media was performed by two dimensional gel electrophoresis (2DE) followed by mass spectrometry. Our results indicate that the cell adapted to cobalt stress by inducing five defense mechanisms: Scavenging of free radicals, promotion of the generation of energy, reparation of DNA, reparation and biogenesis of Fe-S cluster proteins and supporting and reparation of cell wall. In response to the detoxification of Ag+ many proteins were up-regulated, which involved reparation of damaged DNA, minimizing the toxic effect of reactive oxygen species (ROS) and energy generation. Overexpression of proteins involved in cell wall biosynthesis (1,4-alpha-glucan branching enzyme and nucleoside-diphosphate-sugar epimerase) upon cobalt stress and induction of proteins involved in energy metabolism (2-methylcitrate dehydratase and 1, 2-methylcitrate synthase) upon silver demonstrate the potential of these enzymes as biomarkers of sub-lethal Ag+ and Co toxicity.  相似文献   
356.
357.
Emissions of malodors are considered to be the greatest threat to the compost industry. In work presented here, several simple odor mitigation alternatives were investigated for their effectiveness in preventing the release of common odorants, such as terpenes, ammonia, and reduced sulfur compounds. The mitigation methods studied included the use of a blanket of finished compost, compost amendment mixed within the feedstock, odor neutralizing agents (ONAs), and oxygen release compounds (ORCs). Among the mitigation alternatives investigated in this study, the use of finished compost as a blanket and finished compost as an amendment yielded the most conclusive and significant results. Both of these alternatives yielded a substantial emission reduction for terpenes, ammonia, and reduced sulfur compounds. The application of finished compost blanket resulted in up to 95% reduction of terpene and 25% reduction of ammonia emissions. Blending the feedstock with finished compost also provided substantial reduction of terpene emissions ranging from 73.6 to 93.1% at the 24% blending ratio, and up to 85% ammonia reduction a the 35% blending ratio. Use of finished compost also provided 75% lower reduced sulfur compound emissions at the 12% blending ratio. Misting and application of odor neutralizing agents did not result in any consistent reduction in emissions for any of the odorous compounds tested.

Implications The odor emissions from composting are often considered to be the biggest threat to composting facilities. Because most facilities cannot afford enclosures and contained composting vessels, there is a need to inexpensively and effectively control the odor emissions from composting facilities. The findings of this research can lead the way for efforts to control odor easily and cost effectively. In fact, the application of a compost blanket for odor control is already gaining acceptance by the composting industry.  相似文献   
358.
Heavy metal accumulation in soil poses serious environmental and health risks, as metals are carried with eroded soils. In this study, 17 different soil erosion and sediment control products were investigated for their effectiveness in controlling transport of particulate heavy metals (Cu, Zn, Pb, Cd). Among the treatments investigated, wood mulch and tackifiers were found to be the most effective in reducing total suspended solids (TSS) and total heavy metal losses. They reduced TSS to an undetectable level during short-term simulation tests. Paper mulch was the only treatment that had no significant reduction in both total metal loss and TSS. Fiber rolls, silt fences, and gravel bags were effective in reducing sediment loss. Although the netting/blanket treatments were not effective in reducing total metal discharge, they significantly reduced sediment loss compared with the control.  相似文献   
359.
Hammarström L  Kullander S 《Ambio》2012,41(Z2):101-102
  相似文献   
360.
Styring S 《Ambio》2012,41(Z2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号