首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2216篇
  免费   270篇
  国内免费   833篇
安全科学   239篇
废物处理   101篇
环保管理   216篇
综合类   1566篇
基础理论   314篇
污染及防治   505篇
评价与监测   152篇
社会与环境   113篇
灾害及防治   113篇
  2024年   14篇
  2023年   84篇
  2022年   201篇
  2021年   156篇
  2020年   195篇
  2019年   123篇
  2018年   121篇
  2017年   135篇
  2016年   113篇
  2015年   165篇
  2014年   166篇
  2013年   226篇
  2012年   215篇
  2011年   203篇
  2010年   151篇
  2009年   162篇
  2008年   149篇
  2007年   127篇
  2006年   110篇
  2005年   96篇
  2004年   63篇
  2003年   44篇
  2002年   61篇
  2001年   42篇
  2000年   37篇
  1999年   26篇
  1998年   40篇
  1997年   24篇
  1996年   25篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1988年   2篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有3319条查询结果,搜索用时 171 毫秒
271.
曹惜霜  信欣  杨豪  鄂荻 《中国环境科学》2022,42(5):2169-2178
采用共沉淀法制备得到磁性材料壳聚糖@柠檬酸改性Fe3O4(CTS@Fe3O4-COOH),通过单因素与正交试验考察了不同条件下其对小球藻(Chlorella vulgaris)的采收效率.结合XRD、FT-IR和VSM等材料的结构性质表征、表面Zeta电位及Derjaguin-Landau-Verwey-Overbeek(DLVO)理论分析,探讨CTS@Fe3O4-COOH对小球藻的絮凝采收机理.结果表明,CTS@Fe3O4-COOH对小球藻具有高效采收效率,与未改性相比采收效率提高约30%.单因素试验表明材料投加量与pH值对小球藻采收效率的影响较大;正交试验表明当CTS@Fe3O4-COOH投加量为4.5g/L时,在pH 4的条件下,经500r/min快搅3min后再70r/min慢搅5min,对小球藻的采收效率高达98.35%.DLVO等理论分析表明,CTS@Fe3O4-COOH对小球藻的采收机理为电荷中和、静电修补、吸附架桥与整体絮凝联合作用.本文结果为CTS@Fe3O4-COOH采收固定烟气能源微藻的实际应用提供数据支持.  相似文献   
272.
在低NOx浓度条件下开展甲苯和异戊二烯复合体系的烟雾箱模拟实验,使用高时间分辨率的在线质子转移反应飞行时间质谱(PTR-TOF-MS)实时监测混合体系中反应物与产物的浓度变化情况,探究人为源与天然源交汇过程中, 自然源挥发性有机物 (BVOCs)对人为挥发性有机物(AVOCs)化学降解的影响.结果表明,异戊二烯与甲苯竞争OH自由基,从而抑制了甲苯的化学降解,该竞争反应开始得越早,抑制效果越显著.研究还发现异戊二烯会增强甲苯RO2降解途径产物的产量,生成更多1,4不饱和-二羰基化合物(如丁烯二醛和甲基丁烯二醛)与二羰基化合物(如乙二醛和甲基乙二醛),其中甲基丁烯二醛增量最高可达38.6%.此外,异戊二烯快速氧化生成的RO2自由基碳数更少,可能与甲苯氧化生成的RO2自由基发生了快速的交叉反应,有利于甲苯RO自由基的生成及裂解,最终导致甲苯RO2途径裂解产物的增加.  相似文献   
273.
Respirogram technology has been widely applied for aerobic process, however, the response of respirogram to anoxic denitrification is still unclear. To reveal such response may help to design a new method for the evaluation of the performance of denitrification. The size distribution of flocs measured at different denitrification moments demonstrated a clear expansion of flocs triggered by denitrification, during which higher specific endogenous and quasi-endogenous respiration rates (SOURe and SOURq) were also observed. Furthermore, SOURq increases exponentially with the specific denitrification rate (SDNR), suggesting that there should be a maximum SDNR in conventional activated sludge systems. Based on these findings, an index Rq/t, defined as the ratio of quasi-endogenous (OURq) to maximum respiration rate (OURt), is proposed to estimate the denitrification capacity that higher Rq/t indicates higher denitrification potential, which can be readily obtained without complex measurement or analysis, and it offers a novel and promising respirogram-based approach for denitrification estimation and control by taking measures to extend anoxic time to maintain its value at a high level within a certain range.  相似文献   
274.
Vivianite is often found in reducing environments rich in iron and phosphorus from organic debris degradation or phosphorus mineral dissolution. The formation of vivianite is essential to the geochemical cycling of phosphorus and iron elements in natural environments. In this study, extracellular polymeric substances (EPS) were selected as the source of phosphorus. Microcosm experiments were conducted to test the evolution of mineralogy during the reduction of polyferric sulfate flocs (PFS) by Shewanella oneidensis MR-1 (S. oneidensis MR-1) at EPS concentrations of 0, 0.03, and 0.3 g/L. Vivianite was found to be the secondary mineral in EPS treatment when there was no phosphate in the media. The EPS DNA served as the phosphorus source and DNA-supplied phosphate could induce the formation of vivianite. EPS impedes PFS aggregation, contains redox proteins and stores electron shuttle, and thus greatly promotes the formation of minerals and enhances the reduction of Fe(III). At EPS concentration of 0, 0.03, and 0.3 g/L, the produced HCl-extractable Fe(II) was 107.9, 111.0, and 115.2 mg/L, respectively. However, when the microcosms remained unstirred, vivianite can be formed without the addition of EPS. In unstirred systems, the EPS secreted by S. oneidensis MR-1 could agglomerate at some areas, resulting in the formation of vivianite in the proximity of microbial cells. It was found that vivianite can be generated biogenetically by S. oneidensis MR-1 strain and EPS may play a key role in iron reduction and concentrating phosphorus in the oligotrophic ecosystems where quiescent conditions prevail.  相似文献   
275.
Excessive livestock grazing degrades grasslands ecosystem stability and sustainability by reducing soil organic matter and plant productivity. However, the effects of grazing on soil cellulolytic fungi, an important indicator of the degradation process for soil organic matter, remain less well understood. Using T-RFLP and sequencing methods, we investigated the effects of grazing on the temporal changes of cellulolytic fungal abundance and community structure in dry steppe soils during the growing months from May to September, on the Tibetan Plateau using T-RFLP and sequencing methods. The results demonstrated that the abundance of soil cellulolytic fungi under grazing treatment changed significantly from month to month, and was positively correlated with dissolved organic carbon (DOC) and soil temperature, but negatively correlated with soil pH. Contrastingly, cellulolytic fungal abundance did not change within the fencing treatment (ungrazed conditions). Cellulolytic fungal community structure changed significantly in the growing months in grazed soils, but did not change in fenced soils. Grazing played a key role in determining the community structure of soil cellulolytic fungi by explaining 8.1% of the variation, while pH and DOC explained 4.1% and 4.0%, respectively. Phylogenetically, the cellulolytic fungi were primarily affiliated with Ascomycota (69.65% in relative abundance) and Basidiomycota (30.35%). Therefore, grazing substantially reduced the stability of soil cellulolytic fungal abundance and community structure, as compared with the fencing treatment. Our finding provides a new insight into the responses of organic matter-decomposing microbes for grassland managements.  相似文献   
276.
Sulfonamides (SAs) are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues. Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water. Degradation rates of 95%-99.7% were achieved in this work for the tested 8 SAs, including sulfisomidine, sulfameter (SME), phthalylsulfathiazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfisoxazole, sulfachloropyridazine, and sulfadimethoxine, in the Fe3O4/peroxodisulfate (PDS) oxidation system after the optimization of PDS concentration and pH. Meanwhile, it was found that a lot of unknown oxidation products were formed, which brought up the uncertainty of health risks to the environment, and the identification of these unknown products was critical. Therefore, SME was selected as the model compound, from which the oxidation products were never elucidated, to identify these intermediates/products. With liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS), 10 new products were identified, in which 2-amino-5-methoxypyrimidine (AMP) was confirmed by its standard. The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions, such as oxidation of the amino group, SO2 extrusion, and potential cross-reaction occurred simultaneously. Though most of the products were not verified due to the lack of standards, our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater.  相似文献   
277.
Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing amorphous Zr-La (carbonate) oxides (ZLCO) with nano-Fe3O4 through a one-pot solvothermal method for efficient phosphate adsorption. Our optimum sample of MZLCO-45 exhibited a high Langmuir maximum adsorption capacity of 96.16 mg P/g and performed well even at low phosphate concentration. The phosphate adsorption kinetics by MZLCO-45 fitted well with the pseudo-second-order model, and the adsorption capacity could reach 79% of the ultimate value within the first 60 min. The phosphate adsorption process was highly pH-dependent, and MZLCO-45 performed well over a wide pH range of 2.0-8.0. Moreover, MZLCO-45 showed a strong selectivity to phosphate in the presence of competing ions (Cl, NO3, SO42−, HCO3, Ca2+, and Mg2+) and a good reusability using the eluent of NaOH/NaCl mixture, then 64% adsorption capacity remained after ten recycles. The initial 2.0 mg P/L in municipal wastewater and surface water could be efficiently reduced to below 0.1mg P/L by 0.07 g/L MZLCO-45, and the phosphate removal efficiencies were 95.7% and 96.21%, respectively. Phosphate adsorption mechanisms by MZLCO-45 could be attributed to electrostatic attraction and the inner-sphere complexation via ligand exchange forming Zr/La-O-P, -OH and CO32− groups on MZLCO-45 surface played important roles in the ligand exchange process. The existence of oxygen vacancies could accelerate the phosphate absorption rate of the MZLCO-45 composites.  相似文献   
278.
279.
目的 在不同热流条件下,通过调整SiO2气凝胶的孔隙率、涂层厚度等,以满足合适的隔热要求。方法 针对中短程飞行器飞行时外壁面承受短时高热流的特点,在分析孔隙率对SiO2气凝胶热导率影响规律的基础上,通过数值仿真研究不同气凝胶孔隙率、气凝胶厚度及热流作用下的温度响应。结果 得到了不同条件下满足隔热要求的气凝胶最小厚度,以及气凝胶表面的最高温度。高温情况下,气凝胶孔隙率为96%时,有效热导率最低,孔隙率超过96%时,隔热性能变差。结论 当飞行器内壁面温度满足要求时,增大气凝胶的孔隙率,则需要减小气凝胶的厚度,相应的气凝胶表面温度会升高,但升幅很小。当飞行器外壁面承受长时间大热流时,仅调整气凝胶的厚度和孔隙率不能达到结构的隔热要求。  相似文献   
280.
黄土高原北部的绥德地区处于干旱-半干旱地区,对环境变化的响应十分敏感,通过对黄土-古土壤的研究对比可以探索该区的古环境气候特征、环境变化信息等相关问题.本文对绥德黄土-古土壤进行常量、微量、稀土元素测试分析,并与其他地区黄土的地球化学特征进行了对比.结果 表明:绥德地区黄土-古土壤的主要化学成分以SiO2、Al2O3、...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号