首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10693篇
  免费   27篇
  国内免费   25篇
安全科学   131篇
废物处理   573篇
环保管理   1172篇
综合类   1332篇
基础理论   3284篇
环境理论   1篇
污染及防治   1960篇
评价与监测   804篇
社会与环境   1461篇
灾害及防治   27篇
  2023年   42篇
  2022年   76篇
  2021年   59篇
  2020年   29篇
  2019年   42篇
  2018年   636篇
  2017年   616篇
  2016年   558篇
  2015年   123篇
  2014年   152篇
  2013年   416篇
  2012年   374篇
  2011年   978篇
  2010年   616篇
  2009年   677篇
  2008年   851篇
  2007年   1080篇
  2006年   240篇
  2005年   274篇
  2004年   217篇
  2003年   310篇
  2002年   307篇
  2001年   269篇
  2000年   172篇
  1999年   105篇
  1998年   64篇
  1997年   58篇
  1996年   53篇
  1995年   60篇
  1994年   64篇
  1993年   59篇
  1992年   58篇
  1991年   61篇
  1990年   66篇
  1989年   52篇
  1988年   56篇
  1987年   54篇
  1986年   55篇
  1985年   41篇
  1984年   58篇
  1983年   50篇
  1982年   48篇
  1980年   30篇
  1979年   32篇
  1978年   29篇
  1977年   28篇
  1976年   28篇
  1974年   31篇
  1973年   30篇
  1972年   27篇
排序方式: 共有10000条查询结果,搜索用时 888 毫秒
541.
Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma–mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs’ guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.  相似文献   
542.
Surface sediments collected from the Lagos Lagoon, Nigeria, and three adjoining rivers were analysed for their physicochemical properties and pseudo-total concentration of the potentially toxic metals (PTM) Cd, Cr, Cu, Pb and Zn. The concentration of the PTM varied seasonally and spatially. Odo-Iyaalaro was observed to be the most polluted river, with highest concentrations of 42.1 mg kg?1, 102 mg kg?1, 185 mg kg?1, 154 mg kg?1 and 1040 mg kg?1 of Cd, Cr, Cu, Pb and Zn, respectively, while Ibeshe River was the least contaminated, apart from a site affected by Cu from the textile industry. Some of the sediments were found to be above the consensus-based probable effect concentrations and Dutch sediment guideline for metals. Overall metal concentrations were similar to those reported for other tropical lagoon and estuarine systems affected by anthropogenic inputs as a result of rapid urbanisation. Due to the large number of samples, principal component analysis was used to examine relationships within the data set. Generally, sediments collected during the dry season were observed to have higher concentration of PTM than those collected during the rainy season. This means that PTM could accumulate over a prolonged period and then be released relatively rapidly, on an annual basis, into tropical lagoon systems.  相似文献   
543.
The objective of this work was to improve the impact and thermal properties of polylactic acid (PLA)-based biocomposite by appropriate application of cellulosic fiber and a bioelastomer. Biocomposites formulations with fiber contents of up to 20% in combination with a bioelastomer were extrusion-compounded in a twin-screw extruder followed by molding in an injection molding system. Fibers used in the formulations included three types of cellulosic fiber; namely, raw fiber from oat hull biomass (RF), hydrolysis byproduct (ATF) which was the solid fraction obtained from an acid-catalyzed hydrolysis of RF, and delignified fibers (AD30, AD65, AD100) which were the products of delignification of ATF. Formulated biocomposites were characterized for thermal (glass transition and melting temperatures, and enthalpy of melting) and physico-mechanical (tensile and bending strengths, stiffness, impact energy, and water absorption) properties. Among all types of biofibers, RF resulted in poor properties in the biocomposites due to the high hemicellulose content in the structure. On the other hand, the ratio of lignin to cellulose (in the absence of hemicellulose) in the modified fibers did not significantly affect the physico-mechanical and thermal properties of the biocomposites. The elastomer applied in the formulations improved the impact energy, thermal properties, and elongation at break of the composites. However, it adversely affected the strength and water resistance of biocomposites, especially in the presence of hemicellulose. The results indicated that, depending on the application, a wide range of PLA green composites with different physico-mechanical properties can be achieved.  相似文献   
544.
The use of petroleum-derived products should be avoided regarding the principles of green and sustainable chemistry. The work reported herein, is aimed at the liquefaction of pine shavings for the production of an environmentally-friendly polyol suitable to be used in the formulations of sprayable polyurethane foams. The biopolyols were obtained in high yield and were used to replace those derived from fossil sources, to produce more “greener” polyurethane foams and therefore, less dependent on petroleum sources, since the polyol component was substituted by products resulting from biomass liquefaction. The partial and fully exchange of the polyols was accomplished, and the results compared with a reference foam. The foams were afterward, chemical, physical, morphological, and mechanically characterized. The complete replacement of polyether polyol and polyol polyester has presented some similar characteristics as that used as a reference, validating that the path chosen for the development of more sustainable materials is on the right track for the contribution to a cleaner world.  相似文献   
545.
Vinyl acetate (VAc) monomer of different percentage was grafted onto the recycled polyethylene terephthalate (r-PET) films using gamma irradiation. The properties of these modified films were characterized by Fourier transform infrared spectroscopy (FTIR), mechanical properties testing (Tensile strength, Elongation at break), dynamic mechanical analysis (DMA) and thermo-gravimetric analysis (TGA). The Tensile Strength (TS) of the modified PET film increased by 132.25?% to the highest value of 50.12 MPa at 15% VAc monomer concentration at 3 kGy gamma dose, while the elongation at break (EB) decreased by 31.83?%. FTIR was used to investigate the molecular interaction of the modified films. TGA revealed that curve of the modified PET film shifted toward higher temperature region by 95?°C, which is very close to that of PET film made from virgin flakes. The results indicate that modified PET films of better mechanical and thermal properties were successfully prepared using VAc monomer grafting by gamma irradiation technique.  相似文献   
546.
Biocomposites of acrylonitrile butadiene rubber (NBR) reinforced with chicken feather fibre (CF) were prepared using dicumyl peroxide (DCP) as vulcanizing agent. Composites with three series of chicken feather fibres were studied i.e., raw (RCF), sterilized (SCF) and alkali treated (ACF). The cure characteristics of composites were studied. The mechanical properties of NBR were found to be improved by the incorporation of chicken feather fibre in all forms. Surface modification of the fibre was done by alkaline treatment to improve the interfacial adhesion and it characterised by FTIR. Better properties are shown by the composites with ACF. The swelling behaviour of the composites in N,N-dimethylformamide, acetonitrile, dimethyl sulfoxide and water were analyzed for the swelling coefficient values. The biodegradable characteristics of CF reinforced NBR composites were studied by soil burial test which indicated that it is an eco-friendly and acceptable material. Scanning electron microscopy studies support the results of mechanical properties. The outcome obtained from this study is believed to assist the development of environmentally–friendly composites especially for specific product applications like oil seals, hoses and automobile bushes etc.  相似文献   
547.
The global demand of bioplastics has lead to an exponential increase in their production commercially. Hence, biodegradable nature needs to be evaluated in various ecosystems viz. air, water, soil and other environmental conditions to avoid the polymeric waste accumulation in the nature. In this paper, we investigated the progressive response of two indigenously developed bacterial consortia, i.e., consortium-I (C-I: Pseudomonas sp. strain Rb10, Pseudomonas sp. strain Rb11 and Bacillus sp. strain Rb18), and consortium-II (C-II: Lysinibacillus sp. strain Rb1, Pseudomonas sp. strain Rb13 and Pseudomonas sp. strain Rb19), against biodegradation behavior of polyhydroxybutyrate (PHB) film composites, under natural soil ecosystem (in net house). The biodegraded films recovered after 6 and 9 months of incubation were analyzed through Fourier transform infrared spectroscopy and scanning electron microscopy to determine the variations in chemical and morphological parameters (before and after incubation). Noticeable changes in the bond intensity, surface morphology and conductivity were found when PHB composites were treated with C-II. These changes were drastic in case of blends in comparison to copolymer. The potential isolates not only survived, but, also, there was a significant increase in bacterial diversity during whole period of incubation. To the best of our knowledge, it is the first report which described the biodegradation potential of Lysinibacillus sp. as a part of C-II with Pseudomonas sp. against PHB film composites.  相似文献   
548.
The current study is interested in evaluating the decay of cotton, Whatman and chemical pulp caused by Trichoderma harzianum and Paecilomyces variotii. The structural changes of the paper were evaluated by Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). The SEM results show differences in hyphae colonization and paper decay patterns between studied species under the current study; P. variotii caused an eroded structure in the cotton (cavity forming), whereas the initial T. harzianum colonization produced rupture and erosion (soft-rot decay type II) for the three types of paper ,the gaps were elongated with sharp pointed ends, which consisted either of individual cavities or in chains. Moreover, FTIR results confirmed that there a relationship could be observed between fungal decay and crystalline cellulose content because the intensity of peaks at 1335 and 1111 cm?1 significantly decreased due to the fungal decay. Furthermore, the intensity of O–H stretching absorption slightly decreased, and this may be attributed to hydrolysis of cellulose molecules.  相似文献   
549.
This paper investigates the effects of the incorporation of lignin and small quantities of epoxidized natural rubber (ENR) as an impact modifying agent on blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL). The addition of lignin resulted in a slight improvement of flexural strength and modulus of the ternary blending system. Incorporation of ENR into the blend resulted in an increase in notched Izod impact strength from 40 to 135% depending on the concentration of ENR. The addition of lignin into the blend resulted in an improvement of thermal stability of the ternary blend system. Morphological analysis showed a good dispersion of PHBV phases and lignin within the PCL matrix. Rheological characterization revealed that the presence of lignin resulted in increased storage modulus of the bioblend.  相似文献   
550.
Hydrolytic, enzymatic degradation and composting under controlled conditions of series of triblock PCL/PEO copolymers, PCEC, with central short PEO block (M n 400 g/mol) are presented and compared with homopolymer (PCL). The PCEC copolymers, synthesized via ring-opening polymerization of ε-caprolactone, were characterized by 1H NMR, quantitative 13C NMR, GPC, DSC and WAXS. The introduction of the PEO central segment (<?2 wt%) in PCL chains significantly affected thermal degradation and crystallization behavior, while the hydrophobicity was slightly reduced as confirmed by water absorption and moisture uptake experiments. Hydrolytic degradation studies in phosphate buffer after 8 weeks indicated a small weight loss, while FTIR analysis detected changes in crystallinity indexes and GPC measurements revealed bulk degradation. Enzymatic degradation tested by cell-free extracts containing Pseudomonas aeruginosa PAO1 confirmed high enzyme activity throughout the surface causing morphological changes detected by optical microscopy and AFM analysis. The changes in roughness of polymer films revealed surface erosion mechanism of enzymatic degradation. Copolymer with the highest content of PEO segment and the lowest molecular weight showed better degradation ability compared to PCL and other copolymers. Furthermore, composting of polymer films in a model compost system at 37 °C resulted in significant degradation of the all synthesized block copolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号