首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20457篇
  免费   217篇
  国内免费   156篇
安全科学   571篇
废物处理   830篇
环保管理   2549篇
综合类   3743篇
基础理论   5175篇
环境理论   11篇
污染及防治   4996篇
评价与监测   1313篇
社会与环境   1492篇
灾害及防治   150篇
  2022年   188篇
  2021年   177篇
  2020年   134篇
  2019年   170篇
  2018年   254篇
  2017年   310篇
  2016年   421篇
  2015年   339篇
  2014年   494篇
  2013年   1673篇
  2012年   612篇
  2011年   832篇
  2010年   683篇
  2009年   740篇
  2008年   833篇
  2007年   877篇
  2006年   821篇
  2005年   676篇
  2004年   638篇
  2003年   671篇
  2002年   578篇
  2001年   749篇
  2000年   559篇
  1999年   328篇
  1998年   235篇
  1997年   242篇
  1996年   255篇
  1995年   262篇
  1994年   266篇
  1993年   257篇
  1992年   265篇
  1991年   256篇
  1990年   260篇
  1989年   219篇
  1988年   202篇
  1987年   180篇
  1986年   202篇
  1985年   191篇
  1984年   199篇
  1983年   197篇
  1982年   196篇
  1981年   183篇
  1980年   177篇
  1979年   172篇
  1978年   132篇
  1977年   141篇
  1974年   132篇
  1973年   119篇
  1972年   132篇
  1971年   101篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
741.
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.  相似文献   
742.
Al Nasir F  Batarseh MI 《Chemosphere》2008,72(8):1203-1214
The residues of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated benzenes (CBs) and phenols were investigated for soil, wastewater, groundwater and plants. The uptake concentration of these compounds was comparatively determined using various plant types: Zea mays L., Helianthus annus L., Capsicum annum L., Abelmoschus esculentus L., Solanum melongena L. and Lycopersicon esculentum L. which were grown in a pilot site established at Mutah University wastewater treatment plant, Jordan. Soil, wastewater, groundwater and various plant parts (roots, leaves and fruits) samples were extracted in duplicate, cleaned up by open-column chromatography and analyzed by a multi-residue analytical methods using gas chromatography equipped with either mass selective detector (GC/MS), electron capture detector (GC/ECD), or flame ionization detector (FID). Environmentally relevant concentrations of targeted compounds were detected for wastewater much higher than for groundwater. The overall distribution profiles of PAHs and PCBs appeared similar for groundwater and wastewater indicating common potential pollution sources. The concentrations of PAHs, PCBs and phenols for different soils ranged from 169.34 to 673.20 microg kg(-1), 0.04 to 73.86 microg kg(-1) and 73.83 to 8724.42 microg kg(-1), respectively. However, much lower concentrations were detected for reference soil. CBs were detected in very low concentrations. Furthermore, it was found that different plants have different uptake and translocation behavior. As a consequence, there are some difficulties in evaluating the translocation of PAHs, CBs, PCBs and phenols from soil-roots-plant system. The uptake concentrations of various compounds from soil, in which plants grown, were dependent on plant variety and plant part, and they showed different uptake concentrations. Among the different plant parts, roots were found to be the most contaminated and fruits the least contaminated.  相似文献   
743.
A historical input of trace metals into tidal marshes fringing the river Scheldt may be a cause for concern. Nevertheless, the specific physicochemical form, rather than the total concentration, determines the ecotoxicological risk of metals in the soil. In this study the effect of tidal regime on the distribution of trace metals in different compartments of the soil was investigated. As, Cd, Cu and Zn concentrations in sediment, pore water and in roots were determined along a depth profile. Total sediment metal concentrations were similar at different sites, reflecting pollution history. Pore water metal concentrations were generally higher under less flooded conditions (mean is (2.32 ± 0.08) × 10−3 mg Cd L−1 and (1.53 ± 0.03) × 10−3 mg Cd L−1). Metal concentrations associated with roots (mean is 202.47 ± 2.83 mg Cd kg−1 and 69.39 ± 0.99 mg Cd kg−1) were up to 10 times higher than sediment (mean is 20.48 ± 0.19 mg Cd kg−1 and 20.42 ± 0.21 mg Cd kg−1) metal concentrations and higher under dryer conditions. Despite high metal concentrations associated with roots, the major part of the metals in the marsh soil is still associated with the sediment as the overall biomass of roots is small compared to the sediment.  相似文献   
744.
The relationship between the microbial methylation of mercury and the microbial activities in sediments and water collected from the estuary of Bilbao (North of Spain) was studied in three different sampling points and in two different seasons. Three different cultures were prepared with a sediment slurry to distinguish between biotic and abiotic methylation pathways and the variations of the methylmercury concentration and the variations of the population of total number of bacteria (TDC), anaerobic heterotrophic bacteria (AHB), sulphate-reducing bacteria (SRB) and Desulfovibrio were measured. From this work, it can be concluded that the variation of MeHg concentrations is a result of the methylation/demethylation processes in the sediments, and that the abiotic processes have a negligible contribution to those processes. According to the statistical analysis of the results (partial least squares analysis) a significant statistical correlation was established between methylmercury and the SRB counts.  相似文献   
745.
Total mercury (Hg) concentrations were measured in the fur, brain and liver of wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada. Total Hg concentrations in fur were strongly correlated with levels in the brain and liver. There was no difference in tissue concentrations between male and female mink; however, female otters had significantly higher fur, brain and liver Hg levels than males. Similarly, there was not a significant relationship between Hg concentration and age of mink, whereas in otters, Hg concentrations in all three tissues decreased significantly with age. In both species, only a very small percentage of the variability in Hg concentration was explained by age. After adjusting the data for site-to-site differences in Hg levels, Hg concentrations in the fur of mink infected by the parasite, Dioctophyma renale, were found to be significantly higher than Hg levels in uninfected mink.  相似文献   
746.
Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonylphenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations.  相似文献   
747.
Grevillea exul var. exul, an endemic serpentinic Proteaceae of New Caledonia, was chosen to study the spatial distribution of Ni because this species supports strong content of metals, which can allow important absorptions thus detectable by microanalysis. Fine transversal sections of axenic G. exul var. exul plants grown during 15 days on nickel sulphate medium were examined by EDXS microanalysis. It showed that in Ni treated plants, Ni was concentrated mostly in the phloem compared to the xylem and the epidermis, either in roots or in the basal part of the stems and was mostly in the epidermis in the upper part of the stems and not detectable in the leaves. This metal took the place of P and K in the treated plants whereas the localization of these macroelements was quite uniform in control sections. We assume that a mechanism of phloem loading is implicated to restrict Ni accumulation in G. exul var. exul.  相似文献   
748.
Salt marshes are among the most productive ecosystems in the world, performing important ecosystem functions, particularly nutrient recycling. In this study, a comparison is made between Mondego and Tagus estuaries in relation to the role of Spartina maritima in nitrogen retention capacity and cycling. Two mono-specific S. maritima stands per estuary were studied during 1 yr (biomass, nitrogen (N) pools, litter production, decomposition rates). Results showed that the oldest Tagus salt marsh population presented higher annual belowground biomass and N productions, and a slower decomposition rate for litter, contributing to the higher N accumulation in the sediment, whereas S. maritima younger marshes had higher aboveground biomass production. Detritus moved by tides represented a huge amount of aboveground production, probably significant when considering the N balance of these salt marshes. Results reinforce the functions of salt marshes as contributing to a reduction of eutrophication in transitional waters, namely through sedimentation processes.  相似文献   
749.
The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.  相似文献   
750.
Photochemical degradation of methylparathion (O,O,-dimethyl O-4 nitrophenylphosphorothioate) in the presence of humic acid between pH 2 and 7 was monitored by differential pulse polarography. Humic acid was not electro-active under the experimental conditions used in this study. Only the pesticide and its main degradation product at pH 2 exhibited polarographic signals. Photolysis of methylparathion in acid media was sensitized by humic acid since the pesticide did not degrade in the absence of this compound. Methylparathion degradation in the presence of humic acid was observed at each of the studied pHs. The reaction was first-order with rate constant values ranging from 2 x 10(-3) to 6.3 x 10(-3) min(-1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号