首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   0篇
  国内免费   5篇
安全科学   1篇
废物处理   4篇
环保管理   11篇
综合类   8篇
基础理论   9篇
污染及防治   56篇
评价与监测   17篇
社会与环境   4篇
  2022年   20篇
  2021年   11篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   12篇
  2015年   3篇
  2014年   9篇
  2013年   11篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2003年   3篇
  2002年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
91.

Background, aim, and scope  

Lead, a major contaminant, is highly used in paint manufacturing due to its anticorrosive properties. Recent reports indicated high lead content among Indian paints used for commercial purposes. Painters are continuously exposed to these lead containing paints during painting of both commercial as well as residential buildings. Lead is well-known for its genotoxicty in occupational workers; however, in Indian painters the genotoxic effects of lead have not been reported to date. Therefore we aimed to study the genotoxic end points in painters due to their long-term exposure to these high lead-containing Indian paints.  相似文献   
92.
Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.  相似文献   
93.
The UN estimated about five million deaths every year due to water-borne diseases, accounting from four billion patients. Keeping in view, the ever increasing health issues and to undermine this statistics, a reliable and sustainable water-treatment method has been developed using visible light for water treatment. titania nanoparticles (NPs) have been synthesized successfully by a more applicable method Viz: liquid impregnation (LI) method. The bacterial death rate by photocatalysis under visible light was studied by employing a typical fluorescent source and was found to follow pseudo first-order reaction kinetics. The nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy to deduce their size range, surface morphology, and elemental compositions, respectively. Among all the prepared grades, 1 % Ag–TiO2 was found to be a very effective photocatalytic agent against Escherichia coli. The resulted photoinactivated data were also evaluated by different empirical kinetic models for bacterial inactivation. Hom, Hom-power, Rational, and Selleck models were not able to explain the disinfection kinetics but modified-Hom model fitted best with the experimentally obtained data by producing a shoulder, log-linear, and a tail region.  相似文献   
94.
Prenatal and early-life exposure to lead (Pb) is hypothesized to have adverse effects on childhood health. The aim of this study was to evaluate the prenatal exposure to Pb and its adverse effects on mothers and their infants who are residents of industrial (exposed) and domestic areas (referents) in Karachi, Pakistan. The biological samples (scalp hair and blood) of mother–infants pairs were analyzed for Pb levels by atomic absorption spectrometry after microwave-assisted acid digestion method. The Pb levels in scalp hair and blood samples of exposed mothers were found in the range of 7.52–8.70 μg/g and 115–270 μg/L, respectively, which were significantly higher than those values obtained for referent mothers (p?<?0.001). The Pb levels in the blood (umbilical cord) and hair of neonates of exposed mother that were found in the range of 83–178 μg/L and 4.95–7.23 μg/g, respectively, were significantly higher than the obtained values of referent neonates (p?>?0.001). The correlation between maternal and cord blood of both groups was found in the range of 0.708–0.724 (p?<?0.01). It was observed that there were higher Pb burdens in exposed mothers and their infants as compared to referent mothers–neonates.  相似文献   
95.

Purpose

Arsenic, a toxic metalloid in drinking water, has become a major threat for human beings and other organisms. In the present work, attempts have been made to remove arsenate from the synthetic as well as natural water of Ballia district, India by electrocoagulation method. Efforts have also been made to optimize the various parameters such as initial arsenate concentration, pH, applied voltage, processing time, and working temperature.

Method

Electrocoagulation is a fast, inexpensive, selective, accurate, reproducible, and eco-friendly method for arsenate removal from groundwater. The present paper describes an electrocoagulation method for arsenate removal from groundwater using iron and zinc as anode and cathode, respectively.

Results

The maximum removal of arsenate was 98.8% at 2.0?mg?L?1, 7.0, 3.0?V, 10.0?min, and 30°C as arsenate concentration, pH, applied voltage, processing time, and working temperature, respectively. Relative standard deviation, coefficient of determination (r 2), and confidence limits were varied from 1.50% to 1.59%, 0.9996% to 0.9998%, and 96.0% to 99.0%, respectively. The treated water was clear, colorless, and odorless without any secondary contamination. The developed and validated method was applied for arsenate removal of two samples of groundwater of Ballia district, U.P., India, having 0.563 to 0.805?mg?L?1, arsenate concentrations.

Conclusions

The reported method is capable for the removal of arsenate completely (100% removal) from groundwater of Ballia district. There was no change in the groundwater quality after the removal of arsenate. The treated water was safe for drinking, bathing, and recreation purposes. Therefore, this method may be the choice of arsenate removal from natural groundwater.  相似文献   
96.
Environmental Science and Pollution Research - Drought stress is one of the major environmental factors responsible for reduction in crop productivity. In the present study, responses of two maize...  相似文献   
97.
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m3?ha?1 and accounted for 1.91, 1.98, and 1.85 % of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg?ha?1. Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34 %, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg?L?1, with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg?L?1. The loss of NO3 ?–N was greater than the loss of NH4 +–N. The total loss of dissolved organic nitrogen (DON) reached 23–41 % of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.  相似文献   
98.
The aim of this study was to compare the growth kinetic responses to two different sets of conditions by investigating the growth kinetic response of Pseudomonas sp. which was isolated by an enrichment technique using a shaking water bath and a biosimulator. The viable count of the Pseudomonas sp. was initially determined on a small scale using sterile nutrient broth alone, plus broth supplemented with malathion (8.55 mg ml–1) incubated in a shaking water bath. A biosimulator was used on a larger scale to compare the growth kinetics of the Pseudomonas sp. using sterile undiluted and diluted (1:10) nutrient broth. The viable count was measured by the standard plate count (SPC) technique for both the sets of conditions (shaking water bath; biosimulator) and reported as colony forming units (CFU ml–1). In the shaking water bath experiments, the culture grew very well in the presence of 8.55 mg ml–1 malathion, as indicated by good growth response in comparison to that of nutrient broth alone. Similar studies were also performed using the same culture in the biosimulator, using undiluted and diluted (1:10) nutrient broth, results of which revealed, that at each sampling hour the viable population density was greater in the presence of undiluted nutrient broth, than in the presence of diluted (1:10) nutrient broth. A critical evaluation of data presented indicated that the growth performance of Pseudomonas sp. was better in the biosimulator when compared to the shaking water bath. As the Pseudomonas sp. is highly aerobic, it performed better in the biosimulator, where a greater quantity of oxygen (DO 4.0 mg l–1) was more readily available in comparison to the shaking water bath. The total quantity of nutrients available also affected the total viable population density. The study revealed that the wild isolate, when studied on a laboratory scale, could be effective in bioremediation of environmental pollution caused by pesticides.  相似文献   
99.
Environment, Development and Sustainability - Conservation of greenbelts is the most enduringly successful and popular basic need for today to protect green land, preserve ecological landscape and...  相似文献   
100.
Prior surveys conducted have found higher proportion of arsenic-contaminated wells in villages along river Indus in Pakistan. This study aims to determine the prevalence of arsenicosis skin lesions among population exposed to higher exposure in taluka Gambat district Khairpur in Sindh. The cross-sectional survey was conducted from August 2008 to January 2009 among 610 households. A total of 707 water sources (hand pumps/wells) were tested from the villages of union councils of Agra and Jado Wahan for arsenic levels with Quick rapid arsenic field test kits. A total of 110 households exposed to arsenic levels >50 ppb were identified. Case screening for arsenic skin lesions was performed for 610 individuals residing in these 110 high-risk households. Information regarding household and socio-demographic characteristics, height and weight measurements and arsenic exposure assessment were collected. Physical examinations by trained physicians were carried out to diagnose the arsenic skin lesions. After data cleaning, 534 individuals from all age groups were included in the final analysis which had complete exposure and outcome information. Overall prevalence of arsenicosis skin lesions was 13.5 % (72 cases). Of the 534 individuals, 490 (91.8 %) were exposed to arsenic levels of ≥100 ppb in drinking water (8.2 % to >50–99 ppb, 58.6 % to 100–299 ppb, 14.6 % to 300–399 ppb and 18 % to ≥400 ppb). Prevalence rate (per 100 population) of arsenicosis was highest at arsenic levels of 100–199 ppb (15.2 cases) followed by ≥400 ppb (13.5 cases) and 300–399 (12.8 cases). Prevalence rate was higher among females (15.2) compared to males (11.3). Our study reports arsenicosis burden due to exposure to higher arsenic levels in drinking water in Pakistan. Exposure to very high levels of arsenic in drinking water calls for urgent action along river Indus. Prevalence of skin lesions increases with increasing arsenic levels in drinking groundwater. Provision of arsenic-free drinking water is essential to avoid current and future burden of arsenicosis in Pakistan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号