首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  国内免费   3篇
废物处理   13篇
环保管理   3篇
综合类   15篇
基础理论   12篇
污染及防治   8篇
评价与监测   2篇
社会与环境   9篇
  2023年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
  1979年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
51.
The top-down mechanism for body-mass-abundance scaling   总被引:1,自引:0,他引:1  
Rossberg AG  Ishii R  Amemiya T  Itoh K 《Ecology》2008,89(2):567-580
Scaling relationships between mean body masses and abundances of species in multitrophic communities continue to be a subject of intense research and debate. The top-down mechanism explored in this paper explains the frequently observed inverse linear relationship between body mass and abundance (i.e., constant biomass) in terms of a balancing of resource biomasses by behaviorally and evolutionarily adapting foragers, and the evolutionary response of resources to this foraging pressure. The mechanism is tested using an allometric, multitrophic community model with a complex food web structure. It is a statistical model describing the evolutionary and population dynamics of tens to hundreds of species in a uniform way. Particularities of the model are the detailed representation of the evolution and interaction of trophic traits to reproduce topological food web patterns, prey switching behavior modeled after experimental observations, and the evolutionary adaptation of attack rates. Model structure and design are discussed. For model states comparable to natural communities, we find that (1) the body-mass abundance scaling does not depend on the allometric scaling exponent of physiological rates in the form expected from the energetic equivalence rule or other bottom-up theories; (2) the scaling exponent of abundance as a function of body mass is approximately -1, independent of the allometric exponent for physiological rates assumed; (3) removal of top-down control destroys this pattern, and energetic equivalence is recovered. We conclude that the top-down mechanism is active in the model, and that it is a viable alternative to bottom-up mechanisms for controlling body-mass-abundance relations in natural communities.  相似文献   
52.
Humic acids (HA) didn’t cause obvious reverse osmosis (RO) membrane fouling in 45 h. Osmotic pressure (NaCl) affected slightly the RO membrane fouling behavior of HA. Ca2+ promoted aggregation of HA molecules and thus aggravated RO membrane fouling. Ozonation eliminated the effect of Ca2+ on the RO membrane fouling behavior of HA. The change of the structure of HA was related to its membrane fouling behavior. Humic acid has been considered as one of the most significant sources in feed water causing organic fouling of reverse osmosis (RO) membranes, but the relationship between the fouling behavior of humic acid and the change of its molecular structure has not been well developed yet. In this study, the RO membrane fouling behavior of humic acid was studied systematically with ozonation as a pretreatment method to control RO membrane fouling. Furthermore, the effect of ozone on the structure of humic acid was also explored to reveal the mechanisms. Humic acid alone (10–90 mg/L, in deionized water) was found not to cause obvious RO membrane fouling in 45-h operation. However, the presence of Ca2+ aggravated significantly the RO membrane fouling caused by humic acid, with significant flux reduction and denser fouling layer on RO membrane, as it was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). However, after the pretreatment by ozone, the influence of Ca2+ was almost eliminated. Further analysis revealed that the addition of Ca2+ increased the particle size of humic acid solution significantly, while ozonation reduced the SUVA254, particle size and molecular weight of the complexes of humic acid and Ca2+ (HA-Ca2+ complexes). According to these results and literature, the bridge effect of Ca2+ aggregating humic acid molecules and the cleavage effect of ozone breaking HA-Ca2+ complexes were summarized. The change of the structure of humic acid under the effect of Ca2+ and ozone is closely related to the change of its membrane fouling behavior.  相似文献   
53.
Ishii S  Hisamatsu Y  Inazu K  Aika K 《Chemosphere》2001,44(4):681-690
1- and 2-Nitrotriphenylenes were found in the airborne particulate matter extracts collected in central Tokyo between the winter of 1998 and the winter of 1999. In particular, we have identified and quantified nitrotriphenylenes in the airborne particulate matter extracts collected over four consecutive 6-h periods on 2 December 1999. The concentrations of 1- and 2-nitrotriphenylene ranged from 0.04 to 0.44 and from 0.02 to 0.47 ng/m3, respectively, and the concentrations in the airborne particulate matter extracts collected during the 18:00-24:00 h time period were the highest of the four collection periods. 1-Nitropyrene and 2-nitrofluoranthene were also identified and quantified in the four 6-h samples. Although the concentrations of 1- and 2-nitrotriphenylenes were not higher than that of 2-nitrofluoranthene except during the 18:00-24:00 h time period, the concentrations were much higher than that of 1-nitropyrene during the four collection periods.The higher concentrations of 1- and 2-nitrotriphenylenes during the 18:00-24:00 h time period are presumably responsible for the high reactivity of parent triphenylene with NO2/NO3/N2O5, and high stability of 1- and 2-nitrotriphenylenes toward O3 + O2. In addition, the observed isomer distribution of nitrotriphenylenes suggested that direct emission of nitrotriphenylenes is also a source as well as their atmospheric formation.  相似文献   
54.
Carcinogenic and mutagenic compounds, which were extracted from the particulates that adhered to inner surfaces of diesel and gasoline engine mufflers, were quantified by the series method of Soxhlet extraction, liquid-liquid partition, thin-layer chromatography, and spectrofluorometry. Mutagenic activity of their neutral and acidic fractions was tested in the improved Ames assay by the preincubation method with Salmonella typhimurium TA98 in the presence and absence of metabolic activation system (S-9 mix). The average content levels (μg/g tar) of polycyclic aromatic hydrocarbons from gasoline engine cars were greater than those from diesel engine vehicles. However, the levels of nitro derivatives of PAHs and polycyclic quinones from the diesel engines were greater than from the gasoline engines. Mutagenic activity of the diesel acidic fraction was the highest among the diesel and gasoline fractions, and was significantly higher in the absence of the S-9 mix. Furthermore, the relative value (Rc = 0) of infrared absorption of carbonyl stretching vibration to that of methylene asymmetric stretching vibration of the diesel acidic fraction was the highest among the diesel and gasoline fractions. These results strongly suggest that highly direct-acting mutagens in the acidic fraction are at higher levels in diesel emission particulates than those from gasoline, and that these mutagens are carboxylic acid, aldehyde, and alcohol derivatives of PAHs and NPAHs.  相似文献   
55.
An e cient cellulose degrading bacteria exists in the thermophilic wheat straw-degrading community, WDC2. However, this strain cannot be isolated and cultured using conventional separation techniques under strict anaerobic conditions. We successfully isolated a strain of e ective cellulose degrading bacteria CTL-6 using a wash, heat shock, and solid-liquid alternating process. Analysis of its properties revealed that, although the community containing the strain CTL-6 grew under aerobic conditions, the purified strain CTL-6 only grew under anaerobic culture conditions. The strain CTL-6 had a striking capability of degrading cellulose (80.9% weight loss after 9 days of culture). The highest e ciency value of the endocellulase (CMCase activity) was 0.404 mol/(min mL), cellulose degradation e ciency by CTL-6 was remarkably high at 50–65°C with the highest degradation e ciency observed at 60°C. The 16S rRNA gene sequence analysis indicated that the closest relative to strain CTL-6 belonged to the genus Clostridium thermocellum. Strain CTL-6 was capable of utilizing cellulose, cellobiose, and glucose. Strain CTL-6 also grew with Sorbitol as the sole carbon source, whereas C. thermocellum is unable to do so.  相似文献   
56.
This study examined the effects of troposphere ozone (O3) on rice by developing a portable ozone fumigation system and applied to the field in Hanoi, Vietnam. The system was nearly identical to the open top chamber but designed to easily and cheaply assess the O3 sensitivity of local agricultural crops in the actual field. The rice (Oryza sativa L.) was exposed to ozone during the flowering stage at peri-urban experimental site of Hanoi. The fumigation protocols covered five different levels, namely; non-filtered air (ambient) as the control treatment, 32, 62, 85 and 113 ppb in 7-h mean. It was found that observed impacts corresponded well to similar open-top chamber studies in other Asian countries. The methodology and the system left a large room for improvement and called for very careful interpretation and pre-conditions (e.g. low ambient O3 concentration). However, the portable O3 exposure in the field might open a door to the less developed countries to implement the phytotoxic risk assessment of the local agricultural species.  相似文献   
57.
We have measured the elemental concentrations in aerosols with a 2-h time resolution in two different types of working environment: a chemistry laboratory dealing with the processing of advanced nanoparticulate materials and a medium-sized machine workshop. Non-stop 10-day and 12-day samplings were performed at each location in order to determine the concentration trends during the non-working/working and weekday/weekend periods. Supplementary measurements of PM10 aerosols with a 2-day sample collection time were performed with a standard Gent PM10 sampler to compare the elemental concentrations with the time-averaged concentrations detected by the 2D step-sampler. The concentrations were determined a posteriori by analyzing the x-ray spectra of aerosol samples emitted after 3-MeV proton bombardment. The PM10 samples collected in the chemistry laboratory were additionally inspected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to determine the chemical compositions of the individual particles. In the workshop, a total PM10 mass sampling was performed simultaneously with a minute resolution to compare the signal with typical outdoor PM10 concentration levels. A factor analysis of the time-resolved dataset points to six and eight factors in the chemistry laboratory and the machine workshop, respectively. These factors describe most of the data variance, and their composition in terms of different elements can be related to specific indoor activities and conditions. We were able to demonstrate that the elemental concentration sampling with hourly resolution is an excellent tool for studying the indoor air pollution. While sampling the total PM10 mass concentration with a minute resolution may lack the potential to identify the emission sources in a “noisy” environment, the time averaging on a day time scale is too coarse to cope with the working dynamics, even if elemental sensitivity is an option.  相似文献   
58.
Migration of 14C derived from 14C-acetic acid was examined by using soils sampled from paddies in four administrative areas in Japan (Aomori, Yamanashi, Ehime and Okinawa) and rice plant in a tracer experiment to understand the fate of 14C in the paddy soil-to-rice plant system. The loss of 14C radioactivity levels derived from 14C-acetic acid was caused by soil microorganism breakdown. A part of the 14C fixation to soil was caused by microbial assimilation into the fatty acid fraction. 14C moved upward via two different types of 14C dynamics in soil: quick movement upward; and constant but slow movement upward. 14C was highly assimilated into the plant panicle and that was caused by the root-uptake and the transfer of 14C. Migration of 14C derived from 14C-acetic acid relied heavily upon changes of chemical forms and characteristics of 14C-compound as caused by microorganisms in soil.  相似文献   
59.
A large amount of rice straw is generated and left as much in paddy fields, which causes greenhouse gas emissions as methane. Rice straw can be used as bioenergy. Rice straw pellets are a promising technology because pelletization of rice straw is a form of mass and energy densification, which leads to a product that is easy to handle, transport, store and utilize because of the increase in the bulk density. The operational conditions required to produce high quality rice straw pellets have not been determined. This study determined the optimal moisture content range required to produce rice straw pellets with high yield ratio and high heating value, and also determined the influence of particle size and the forming temperature on the yield ratio and durability of rice straw pellets. The optimal moisture content range was between 13% and 20% under a forming temperature of 60 or 80 °C. The optimal particle size was between 10 and 20 mm, considering the time and energy required for shredding, although the particle size did not significantly affect the yield ratio and durability of the pellets. The optimized conditions provided high quality rice straw pellets with nearly 90% yield ratio, ?12 MJ/kg for the lower heating value, and >95% durability.  相似文献   
60.
The biosynthesis of poly(3-hydroxyalkanoate) (PHA) by Pseudomonas putida (JCM6160) cultivated in a medium containing glycerol, nonanoic acid, or a glycerol/nonanoic acid mixture as the sole carbon sources was investigated. The PHA content was ~20 % when glycerol was the carbon source. This relatively low content can be attributed to the glycerol end-cap effect and the absence of enzymes that can directly synthesize PHA from acetyl CoA, which is the major metabolite of glycerol. Fatty acids, containing even numbered carbons, are synthesized from acetyl CoA, and they can be used as substrates for PHA synthesis. However, this process also results in decreasing PHA content as fatty acids are siphoned off into other pathways. However, addition of 5 mM nonanoic acid into a 20 mM glycerol-containing medium dramatically increased the PHA content in P. putida, which was 1.3 times larger than the sum of the values found when glycerol and nonanoic acid were each used as the sole carbon source. The PHA, synthesized in the glycerol/nonanoic acid medium, contains 3-hydroxy alkanoate units that have 5, 6, 7, 8, 9, or 10 carbons. The units that contain the even numbered carbons are derived from fatty acids that were produced from glycerol; whereas, the PHA units with the odd numbered carbons are derived from nonanoic acid. Pentanoate units were also found in the polyester derived from glycerol and nonanoic acid, and must have been synthesized indirectly via β-oxidation of nonanoic acid with the assistance of glycerol because pentanoate units were not found in PHA when P. putida was cultivated in the presence of only nonanoic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号