首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   2篇
  国内免费   4篇
安全科学   4篇
废物处理   7篇
环保管理   15篇
综合类   16篇
基础理论   28篇
污染及防治   99篇
评价与监测   19篇
社会与环境   17篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   14篇
  2015年   5篇
  2014年   8篇
  2013年   17篇
  2012年   17篇
  2011年   13篇
  2010年   9篇
  2009年   18篇
  2008年   10篇
  2007年   17篇
  2006年   12篇
  2005年   9篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1994年   1篇
  1965年   1篇
排序方式: 共有205条查询结果,搜索用时 46 毫秒
71.
Red alder (Alnus rubra), a nitrogen(N)‐fixing deciduous broadleaf tree, can strongly influence N concentrations in western Oregon and Washington. We compiled a database of stream N and GIS‐derived landscape characteristics in order to examine geographic variation in N across the Oregon Coast Range. Basal area of alder, expressed as a percent of watershed area, accounted for 37% and 38% of the variation in summer nitrate and total N (TN) concentrations, respectively. Relationships between alder and nitrate were strongest in winter when streamflow and landscape connections are highest. Distance to the coast and latitude, potential surrogates for sea salt inputs, and watershed area were also related to nitrate concentrations in an all‐subsets regression analysis, which accounted for 46% of the variation in summer nitrate concentrations. The model with the lowest Akaike's Information Criterion did not include developed or agricultural land cover, probably because few watersheds in our database had substantial levels of these land cover classes. Our results provide evidence, at a regional scale, that background sources and processes cause many Coast Range streams to exceed proposed nutrient criteria, and that the prevalence of a single tree species (N‐fixing red alder) exerts a dominant control over stream N concentrations across this region.  相似文献   
72.
The ability of plant species to accumulate arsenic (As) species in the biomass from As-contaminated soils is variable. Among the plants widely grown at the As-contaminated locations, Plantaginaceae and Cyperaceae families belong to the frequent ones. In this study, the ability of Plantago lanceolata (Plantaginaceae) and three wetland plant species representing the family Cyperaceae (Carex praecox, Carex vesicaria, and Scirpus sylvaticus) naturally occurring in the soils with an elevated As in the Czech Republic were investigated. The plants were cultivated under controlled conditions in an As-contaminated soil reaching 735?mg?kg?1 of the total As. The total As in plants reached up to 8.3?mg?kg?1 in leaves, and up to 155?mg?kg?1 in roots of C. praecox. Dominant As compounds were arsenite and arsenate with a small abundance of dimethylarsinic acid (DMA) in all the plant species. In Cyperaceae, small percentages of arsenobetaine (AB) and arsenocholine (AC) were detected, suggesting the ability of these plants to transform As into less toxic compounds. Moreover, the important role of As(V) sequestration on iron plaque on the root surface of Cyperaceae was confirmed. In this context, root washing with oxalic acid partially disrupted the iron plaque for the better release of arsenate.  相似文献   
73.
74.
截至目前,环境中抗生素的行为及其对生态毒性的影响仍被忽视。这一课题的范畴是宽泛的,涉及到广泛的生物体,包括栖居在各种水生生态系统中的微生物,藻类,无脊椎动物和脊椎动物等。改变这种系统中任何一个组成的平衡破坏了整个系统的平衡。在人类和动物医学中,氟喹诺酮的制造和频繁使用引起了对微生物抗生素耐药性流行率增加的高度关注,而且,除此之外,通过各种途径进入环境生态系统的抗生素母体和代谢物化合物的归趋也引起了环境影响关注。相关研究集中在分析环境样品中氟喹诺酮的存留浓度,并且经常使用动物评估模型来测试急性毒性,但是仍然不清楚在水生环境中低水平慢性接触对生命形态的生态毒性影响中起什么作用。本综述的目的是评估氟喹诺酮在动物和人类医学中的使用水平,确定其传播的途径,突出在淡水环境中的生态毒理学影。
精选自Nicol Janecko, Lucie Pokludova, Jana Blahova, Zdenka Svobodova, Ivan Literak. Implications of fluoroquinolone contamination on the fresh water aquatic environment -A review. Environmental Toxicology and Chemistry: Volume 35, Issue 11, pages 2647–2656, November 2016. DOI: 10.1002/etc.3552
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3552/full
  相似文献   
75.
The persistence of lipophilic organochlorine substances leads to their incorporation into the food chain and subsequent uptake by humans. Due to their use in the past, Czech and Slovak countries belong to the countries with a relatively high body burden of organochlorines. Levels of PCBs in human tissues based on the congener‐specific analysis are reported in this paper. Samples were analysed for the most abundant PCB congeners. Prevalent persistent organochlorine pesticides and their isomers/metabolites have also been included. The present study is focused on following areas: i) distribution of analysed substances in the various human tissue samples from selected regions of the Czech and Slovak Republic and ii) comparison with the results from other foreign and local studies.  相似文献   
76.
Due to their increasing use, the residues of anti-neoplastic drugs have become emerging pollutants in aquatic environments. Most of them directly or indirectly interfere with the cell’s genome, which classifies them into a group of particularly dangerous compounds. The aim of the present study was to conduct a comparative in vitro toxicological characterisation of three commonly used cytostatics with different mechanisms of action (5-fluorouracil [5-FU], cisplatin [CDDP] and etoposide [ET]) towards zebrafish liver (ZFL) cell line, human hepatoma (HepG2) cells and human peripheral blood lymphocytes (HPBLs). Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and acridine orange/ethidium bromide staining. All three drugs induced time- and dose-dependent decreases in cell viability. The sensitivity of ZFL and HepG2 cells towards the cytotoxicity of 5-FU was comparable (half maximal inhibitory concentration (IC50) 5.3 to 10.4 μg/mL). ZFL cells were more sensitive towards ET- (IC50 0.4 μg/mL) and HepG2 towards CDDP- (IC50 1.4 μg/mL) induced cytotoxicity. Genotoxicity was determined by comet assay and cytokinesis block micronucleus (CBMN) assay. ZFL cells were the most sensitive, and HPBLs were the least sensitive. In ZFL cells, induction of DNA strand breaks was a more sensitive genotoxicity endpoint than micronuclei (MNi) induction; the lowest effective concentration (LOEC) for DNA strand break induction was 0.001 μg/mL for ET, 0.01 μg/mL for 5-FU and 0.1 μg/mL for CDDP. In HepG2 cells, MNi induction was a more sensitive genotoxicity endpoint. The LOEC values were 0.01 μg/mL for ET, 0.1 μg/mL for 5-FU and 1 μg/mL for CDDP. The higher sensitivity of ZFL cells to cytostatic drugs raises the question of the impact of such compounds in aquatic ecosystem. Since little is known on the effect of such drugs on aquatic organisms, our results demonstrate that ZFL cells provide a relevant and sensitive tool to screen genotoxic potential of environmental pollutant in the frame of hazard assessment.  相似文献   
77.
Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40–70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag+ concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists, physical chemists, and biologists.  相似文献   
78.
Data from ten years of integrated monitoring were used here to evaluate whether pine needles are a feasible tool for an assessment of long-term trends of the atmospheric contamination. Pine needles collected once a year were compared to high volume air samples collected for 24 h, every 7 days, and passive air samples integrated over 28-day periods. Results showed the same concentration patterns of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) captured in needles and high volume samples. Passive air samplers were less efficient in sampling the particle-bound compounds. Theoretical air volume equivalent to each needle sample (VEQ) was calculated as a ratio of the needle concentration over the mean air concentration. Results indicated different equivalent volumes for PAHs and organochlorines, possibly due to the faster degradation rates of PAHs in needles. The most important finding is that in the long term a needle monitoring gives very similar information on temporal trends of the atmospheric pollution as does a high volume air monitoring.  相似文献   
79.
Background, aim and scope  Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Results  Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect the chlorine cycle, although little is at present known about how. Discussion  The present data on the apparently considerable size of the pool of OCls indicate its importance for the functioning of the forest soil system and its stability, but factors controlling their formation, degradation and transport are not clearly understood. It would be useful to estimate the significance and rates of key processes to be able to judge the importance of OCls in SOM and litter degradation. Effects of forest management processes affecting SOM and chloride deposition are likely to affect OCls as well. Further standardisation and harmonisation of sampling and analytical procedures is necessary. Conclusions and perspectives  More work is necessary in order to understand and, if necessary, develop strategies for mitigating the environmental impact of OCls in temperate and boreal forest soils. This includes both intensified research, especially to understand the key processes of formation and degradation of chlorinated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on OCls, as management can be used to produce desired effects.  相似文献   
80.

Background, aim, and scope  

Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号