首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   1篇
安全科学   1篇
废物处理   4篇
环保管理   6篇
综合类   12篇
基础理论   14篇
污染及防治   31篇
评价与监测   7篇
社会与环境   6篇
灾害及防治   1篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   7篇
  2015年   2篇
  2014年   9篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有82条查询结果,搜索用时 0 毫秒
31.
Assessment of the fetal cerebral circulation provides important information on the hemodynamic changes associated with chronic hypoxia and intrauterine growth restriction. Despite the incorporation of new US parameters, the landmark for the fetal brain hemodynamic evaluation is still the middle cerebral artery. However, new vascular territories, such as the anterior and posterior cerebral arteries, might provide additional information on the onset of the brain sparing effect. The fractional moving blood volume estimation and three-dimensional power Doppler ultrasound indices are new techniques that seem to be promising in indentifying cases at earlier stages of vascular deterioration; still, they are not available for clinical application and more information is needed on the reproducibility and advantages of three-dimensional power Doppler ultrasound blood flow indices. In the past, the brain sparing effect was considered as a protective mechanism; however, recent information challenges this concept. There is growing evidence of an association between brain sparing effect and increased risk of abnormal neurodevelopment after birth. Even in mild late-onset intrauterine growth restriction affected fetuses with normal umbilical artery blood flow, increased cerebral blood perfusion can be associated with a substantial risk of abnormal neuroadaptation and neurodevelopment during childhood. © 2012 John Wiley & Sons, Ltd.  相似文献   
32.

Background

This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey.

Results

Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of <?40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (=?above-average) or low (=?below-average) correlation coefficients.

Conclusions

LDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites.
  相似文献   
33.
Toxic effects of pollutants on marine organisms can be studied both by performing field measurements, and by undertaking laboratory simulation experiments. Here is described the effect of trace metals Zn, Cd, Pb and Cu on the clam Scrobicularia plana along a salinity gradient simulated in a hypothetical estuary using simulation experiments. The simulator produces a continuous entry of trace metals into the estuary through injection in the lower salinity tank of the system. The clams were exposed during two weeks to different concentration of trace metals to assess the bioaccumulation process along a salinity gradient. Bivalves were analysed for body tissue residue to determine the bioaccumulation factors related to each metal and the salinity influence was addressed. Differences among tanks were observed as a result of the salinity gradient. In the achieved assays, the mechanism of bioaccumulation of Zn and Cd in organisms was more efficient at high salinity values. Bioaccumulation factors for both metals showed a linear increase with the increase of salinity values. It seems that the mechanism of bioaccumulation of Pb and Cu in organisms was dependent on two simultaneous processes: the proximity to the input point of metals and the low salinity values.  相似文献   
34.
35.
Total mercury (T-Hg) and methylmercury (MeHg) concentrations have been measured in the muscle tissue of 16 fish species consumed in the Mojana region of Colombia. T-Hg analysis was performed by cold-vapor atomic-absorption spectroscopy (CV-ASS) and MeHg analysis by gas chromatography with electron-capture detection. Higher T-Hg and MeHg concentrations were detected in carnivorous species (T-Hg = 0.371 ± 0.172 (μg g−1 fresh wt, MeHg = 0.346 ± 0.171 μg g−1 fresh wt) than in non-carnivorous fish (T-Hg = 0.155 ± 0.108 μg g−1 fresh wt, MeHg = 0.146 ± 0.102 μg g−1 fresh wt). In the different species mercury was present almost completely as the methylated form, with percentages between 80.5 and 98.1% (mean 92.0 ± 3.4%). In 13.5% of fish-tissue samples T-Hg concentrations exceeded the maximum level recommended by the World Health Organization for human consumption (Hg = 0.5 μg g−1 fresh wt). Although mean T-Hg concentrations in all fish samples (0.269 ± 0.181 μg g−1 fresh wt) did not exceed this limit, risk assessment suggested that the consumption of 0.12 kg fish day−1 could increase the risk of mercury poisoning of the inhabitants of this region.  相似文献   
36.
In 1976, the discovery of the Love Canal Superfund Site in New York thrust environmental cleanups into the forefront of the national conscience and essentially launched the remediation industry. Since then, vast efforts have been devoted to improving site remediation. Despite the attention given to key subject areas, such as site characterization, risk assessment, and remediation technologies, relatively little attention has been given to the objectives set forth for conducting cleanups, and they have generally not been rigorously evaluated in the literature. Several of the more common objectives for remediation projects are discussed. © 2014 Wiley Periodicals, Inc.  相似文献   
37.
The use of prescribed fire is expected to increase in an effort to reduce the risk of catastrophic fire, particularly at urban/forest interfaces. Fire is a well-known source of particulate matter (PM) with particle sizes < or =2.5 microm (PM2.5), small diameter PM known to affect climate, visibility, and human health. In this work, PM2.5 was collected during seven first-entry burns (flaming and smoldering stages) and one maintenance burn of the Coconino National Forest. Samples were analyzed for organic and elemental carbon, cations (sodium, potassium [K+], and ammonium [NH4+]), anions (nitrate [NO3-] and sulfate), and 48 elements (with atomic weights between sodium and lead). The PM2.5 contained high organic carbon levels (typically >90% by mass), commonly observed ions (K+, NH4+, and NO3-) and elements (K+, chlorine, sulfur, and silicon), as well as titanium and chromium. Flaming produced higher K+ and NH4+ levels than smoldering, and the elemental signature was more complex (20 versus 7 elements). Average organic carbon x 1.4 mass fractions (+/-standard deviation) were lower during flaming (92+/-14%) than during smoldering (124+/-24%). The maintenance (grassland) burn produced lower particle concentrations, lower NH4+ and NO3- levels, and higher K and chlorine levels than did the first-entry fires.  相似文献   
38.
Environment, Development and Sustainability - Urbanization has threatened rural communities’ livelihoods worldwide, changing their agro-food systems from locally produced traditional items to...  相似文献   
39.
Regional Environmental Change - Integrated farming systems (IS) are one of the main strategies of the Brazilian government to reduce or compensate for carbon emissions from agriculture with...  相似文献   
40.
The impact of nanoparticles on fish health is still a matter of debate, since nanotechnology is quite recent. In this study, freshwater benthonic juvenile fish Prochilodus lineatus were exposed through water to three concentrations of TiO2 (0.1, 1, and 10 μg l?1) and ZnO (7, 70, and 700 μg l?1) nanoparticles, as well as to a mixture of both (TiO2 1 μg l?1?+?ZnO 70 μg l?1) for 5 and 30 days. Nanoparticle characterization revealed an increase of aggregate size in the function of concentration, but suspensions were generally stable. Fish mortality was high at subchronic exposure to 70 and 700 μg l?1 of ZnO. Nanoparticle exposure led to decreased acetylcholinesterase activity either in the muscle or in the brain, depending on particle composition (muscle—TiO2 10 μg l?1; brain—ZnO 7 and 700 μg l?1), and protein oxidative damage increased in the brain (ZnO 70 μg l?1) and gills (ZnO 70 μg l?1 and mixture) but not in the liver. Exposed fish had more frequent alterations in the liver (necrosis, vascular congestion, leukocyte infiltration, and basophilic foci) and gills (hyperplasia and epithelial damages, e.g., epithelial disorganization and epithelial loss) than the control fish. Thus, predicted concentrations of TiO2 and ZnO nanoparticles caused detectable effects on P. lineatus that may have important consequences to fish health. But, these effects are much more subtle than those usually reported in the scientific literature for high concentrations or doses of metal nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号