首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6897篇
  免费   590篇
  国内免费   2512篇
安全科学   612篇
废物处理   396篇
环保管理   552篇
综合类   4512篇
基础理论   1034篇
环境理论   1篇
污染及防治   1887篇
评价与监测   353篇
社会与环境   312篇
灾害及防治   340篇
  2024年   27篇
  2023年   143篇
  2022年   394篇
  2021年   398篇
  2020年   358篇
  2019年   284篇
  2018年   279篇
  2017年   353篇
  2016年   323篇
  2015年   453篇
  2014年   510篇
  2013年   720篇
  2012年   640篇
  2011年   621篇
  2010年   502篇
  2009年   490篇
  2008年   498篇
  2007年   405篇
  2006年   391篇
  2005年   322篇
  2004年   196篇
  2003年   207篇
  2002年   215篇
  2001年   154篇
  2000年   165篇
  1999年   159篇
  1998年   131篇
  1997年   117篇
  1996年   113篇
  1995年   120篇
  1994年   83篇
  1993年   68篇
  1992年   55篇
  1991年   35篇
  1990年   15篇
  1989年   8篇
  1988年   16篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   3篇
排序方式: 共有9999条查询结果,搜索用时 78 毫秒
901.
As one of the transition metals, vanadium (V) (V(V)) in trace amounts represents an essential element for normal cell growth, but becomes toxic when its concentration is above 1 mg/L. V(V) can alter cellular differentiation, gene expression, and other biochemical and metabolic phenomena. A feasible method to detoxify V(V) is to reduce it to V(IV), which precipitates and can be readily removed from the water. The bioreduction of V(V) in a contaminated groundwater was investigated using autohydrogentrophic bacteria and hydrogen gas as the electron donor. Compared with the previous organic donors, H2 shows the advantages as an ideal electron donor, including nontoxicity and less production of excess biomass. V(V) was 95.5% removed by biochemical reduction when autohydrogentrophic bacteria and hydrogen were both present, and the reduced V(IV) precipitated, leading to total-V removal. Reduction kinetics could be described by a first-order model and were sensitive to pH and temperature, with the optimum ranges of pH 7.5–8.0 and 35–40°C, respectively. Phylogenetic analysis by clone library showed that the dominant species in the experiments with V(V) bioreduction belonged to the β-Proteobacteria. Previously known V(V)-reducing species were absent, suggesting that V(V) reduction was carried out by novel species. Their selective enrichment during V(V) bioreduction suggests that Rhodocyclus, a denitrifying bacterium, and Clostridium, a fermenter known to carry out metal reduction, were responsible for V(V) bioreduction.  相似文献   
902.
Cu–Mn, Cu–Mn–Ce, and Cu–Ce mixed-oxide catalysts were prepared by a citric acid sol–gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu–Mn–Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu–Mn–Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu–Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu–Mn and Cu–Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species.  相似文献   
903.
The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV–visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV–visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca2 + and Mg2 +) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments.  相似文献   
904.
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO42 −-doped OMS-2-AC catalysts with different SO42 − concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO42 − on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO42 − doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO42 − (SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO42 − species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO42 − species in OMS-2-SO4 samples.  相似文献   
905.
The responses of soil ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB) to mercury(Hg) stress were investigated through a short-term incubation experiment.Treated with four different concentrations of Hg(CK,Hg25,Hg50,and Hg100,denoting 0,25,50,and 100 mg Hg/kg dry soil,respectively),samples were harvested after 3,7,and 28 day incubation.Results showed that the soil potential nitrification rate(PNR) was significantly inhibited by Hg stress during the incubation.However,lower abundances of AOA(the highest in CK: 9.20 × 10~7 copies/g dry soil; the lowest in Hg50: 2.68 × 10~7 copies/g dry soil) and AOB(the highest in CK: 2.68 × 10~7 copies/g dry soil; the lowest in Hg50:7.49 × 10~6 copies/g dry soil) were observed only at day 28 of incubation(P 0.05).Moreover,only the community structure of soil AOB obviously shifted under Hg stress as seen through DGGE profiles,which revealed that 2–3 distinct AOB bands emerged in the Hg treatments at day 28.In summary,soil PNR might be a very useful parameter to assess acute Hg stress on soil ecosystems,and the community structure of soil AOB might be a realistic biological indicator for the assessment of heavy metal stress on soil ecosystems in the future.  相似文献   
906.
The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation–reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S(nitrate/sulfide)ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems.  相似文献   
907.
908.
为了揭示冬季滨海湿地植被收割对其沉积物中温室气体释放的影响,以长江入海口典型滨海湿地——崇明东滩为研究对象,观测季节性(冬季)植被收割(分别于收割后第0天、第10天、第30天、第60天采样)与不收割条件下芦苇(Phragmites australis)、米草(Spartina alterniflora)、芦苇-米草交互带和光滩沉积物中CO2与N2O的释放特征.结果表明:1米草和芦苇-米草交互带植被收割并未增加沉积物中CO2的释放(P0.05),但芦苇收割可能会增加N2O的释放(P0.05),说明植被收割对湿地沉积物中CO2和N2O释放的影响与植被类型密切相关.2与芦苇带相比,米草和芦苇-米草交互带沉积物中CO2累积释放量分别高出12%~57%和17%~43%,但芦苇植被覆盖下沉积物中N2O累积释放量分别比二者高出11%~81%和8%~95%.可见,米草和芦苇-米草交互带沉积物碳的呼吸损失明显高于芦苇带,但芦苇植被覆盖下沉积物中N2O逸失量相对较高.34种植被类型下,沉积物中N2O累积释放量为0.1~0.4 mg/kg,CO2累积释放量则高达1 024~2 645 mg/kg.因此,冬季滨海湿地植被收割不会显著增加N2O的温室效应,但选择性收割米草有望减少沉积物碳的呼吸损失.  相似文献   
909.
采用石墨电极对含α-氯代环己基苯基甲酮的氯化清洗水进行电化学降解。结果表明,电化学降解对COD的去除效果非常明显,并且随着电流密度增加,COD的去除效率逐渐升高,电流密度由15 mA/cm2增加至100 mA/cm2, COD的去除率从39.7%升高到72.3%;电化学降解作用下,水样可生化性显著提高,降解2 h后,(BOD5)/(COD)由原水的0.22提高到0.46;电化学降解过程中,COD的降解遵循零级反应动力学方程;此外,还对电化学降解过程中α-氯代环己基苯基甲酮的降解途径进行了推测。  相似文献   
910.
酒店游客接待量大,人口密集,一旦发生火灾,危害巨大。识别酒店业火灾事故的发生特征以及影响因素将有助于有效构建防控管理体系。以2004—2013年我国发生的283起酒店业火灾事故案例为研究样本,通过对案例信息的分解、编码与统计,利用聚类分析、交叉性列联表等方法对我国酒店业火灾事故的时空分布特征和后果特征进行了多元统计分析,归纳出我国酒店业火灾事故发生的9大原因,并根据我国酒店业火灾事故总体发生特征构建了顾客管理、全员防火管理、时间管理、场所管理、应急管理和智能系统管理六个方面的火灾防控管理体系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号